| classif.ML | R Documentation | 
Computes functional classification using functional (and non functional) explanatory variables by rpart, nnet, svm or random forest model
classif.nnet(formula, data, basis.x = NULL, weights = "equal", size, ...)
classif.rpart(
  formula,
  data,
  basis.x = NULL,
  weights = "equal",
  type = "1vsall",
  ...
)
classif.svm(
  formula,
  data,
  basis.x = NULL,
  weights = "equal",
  type = "1vsall",
  ...
)
classif.ksvm(formula, data, basis.x = NULL, weights = "equal", ...)
classif.randomForest(
  formula,
  data,
  basis.x = NULL,
  weights = "equal",
  type = "1vsall",
  ...
)
classif.lda(
  formula,
  data,
  basis.x = NULL,
  weights = "equal",
  type = "1vsall",
  ...
)
classif.qda(
  formula,
  data,
  basis.x = NULL,
  weights = "equal",
  type = "1vsall",
  ...
)
classif.naiveBayes(formula, data, basis.x = NULL, laplace = 0, ...)
classif.cv.glmnet(formula, data, basis.x = NULL, weights = "equal", ...)
classif.gbm(formula, data, basis.x = NULL, weights = "equal", ...)
| formula | an object of class  | 
| data | List that containing the variables in the model. | 
| basis.x | List of basis for functional explanatory data estimation. | 
| weights | Weights: 
 | 
| size | number of units in the hidden layer. Can be zero if there are skip-layer units. | 
| ... | Further arguments passed to or from other methods. | 
| type | If type is | 
| laplace | value used for Laplace smoothing (additive smoothing). Defaults to 0 (no Laplace smoothing). | 
The first item in the data list is called "df" and is a data
frame with the response and non functional explanatory variables, as
glm.
Functional covariates of class fdata or fd are introduced in
the following items in the data list.
 basis.x is a list of
basis for represent each functional covariate. The b object can be
created by the function: create.pc.basis, pca.fd
create.pc.basis, create.fdata.basis o
create.basis.
 basis.b is a list of basis for
represent each functional beta parameter. If basis.x is a list of
functional principal components basis (see create.pc.basis or
pca.fd) the argument basis.b is ignored.
Return classif object plus:
formula: formula.
data: List that containing the variables in the model.
group: Factor of length n. 
group.est: Estimated vector groups.
prob.classification: Probability of correct classification by group.
prob.group: Matrix of predicted class probabilities. For each
functional point shows the probability of each possible group membership.
max.prob: Highest probability of correct classification.
type:  Type of classification scheme: 1 vs all  or majority voting.
fit: list of binary classification fitted models.
Wrapper versions for multivariate and functional classification:
classif.lda,classif.qda: uses lda and  qda functions and requires MASS package.
classif.nnet: uses nnet function and requires nnet package.
classif.rpart: uses nnet function and requires rpart package.
classif.svm, classif.naiveBayes: uses svm and  naiveBayes functions and requires e1071 package.
classif.ksvm: uses weighted.ksvm  function and requires personalized package.
classif.randomForest: uses randomForest function and requires randomForest package.
classif.cv.glmnet: uses cv.glmnet function and requires glmnet package.
classif.gbm: uses gbm function and requires gbm package.
Febrero-Bande, M. and Oviedo de la Fuente, M.
Ramsay, James O., and Silverman, Bernard W. (2006), Functional Data Analysis, 2nd ed., Springer, New York.
McCullagh and Nelder (1989), Generalized Linear Models 2nd ed. Chapman and Hall.
Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S, New York: Springer. Regression for R. R News 1(2):20-25
See Also as: rpart.
 Alternative method:
classif.np, classif.glm,
classif.gsam and classif.gkam.
## Not run: 
data(phoneme)
mlearn<-phoneme[["learn"]]
glearn<-phoneme[["classlearn"]]
mtest<-phoneme[["test"]]
gtest<-phoneme[["classtest"]]
dataf<-data.frame(glearn)
dat=ldata("df"=dataf,"x"=mlearn)
a1<-classif.rpart(glearn~x,data=dat)
a2<-classif.nnet(glearn~x,data=dat)
a3<-classif.gbm(glearn~x,data=dat)
a4<-classif.randomForest(glearn~x,data=dat)
a5<-classif.cv.glmnet(glearn~x,data=dat)
newdat<-list("x"=mtest)
p1<-predict(a1,newdat,type="class")
p2<-predict(a2,newdat,type="class")
p3<-predict(a3,newdat,type="class")
p4<-predict(a4,newdat,type="class")
p5<-predict(a5,newdat,type="class")
mean(p1==gtest);mean(p2==gtest);mean(p3==gtest)
mean(p4==gtest);mean(p5==gtest)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.