View source: R/fdata.bootstrap.r
fdata.bootstrap | R Documentation |
provides bootstrap samples for functional data.
fdata.bootstrap(
fdataobj,
statistic = func.mean,
alpha = 0.05,
nb = 200,
smo = 0,
draw = FALSE,
draw.control = NULL,
...
)
fdataobj |
|
statistic |
Sample statistic. It must be a function that returns an
object of class |
alpha |
Significance value. |
nb |
Number of bootstrap resamples. |
smo |
The smoothing parameter for the bootstrap samples as a proportion of the sample variance matrix. |
draw |
If |
draw.control |
List that it specifies the |
... |
Further arguments passed to or from other methods. |
The fdata.bootstrap
computes a confidence ball using bootstrap in
the following way:
Let X_1(t),\ldots,X_n(t)
be the original data and
T=T(X_1(t),\ldots,X_n(t))
be the sample statistic.
Calculate the nb
bootstrap resamples
\left\{X_{1}^{*}(t),\cdots,X_n^*(t)\right\}
,
using the following scheme: X_i^*(t)=X_i(t)+Z(t)
,
where Z(t)
is normally distributed with mean 0 and covariance matrix
\gamma\Sigma_x
, where \Sigma_x
is the
covariance matrix of \left\{X_1(t),\ldots,X_n(t)\right\}
and \gamma
is the smoothing parameter.
Let T^{*j}=T(X^{*j}_1(t),...,X^{*j}_n(t))
be the estimate using the j
resample.
Compute d(T,T^{*j})
, j=1,\ldots,nb
. Define the bootstrap
confidence ball of level 1-\alpha
as CB(\alpha)=X\in E
such that d(T,X)\leq d_{\alpha}
being
d_{\alpha}
the quantile (1-\alpha)
of the
distances between the bootstrap resamples and the sample estimate.
The fdata.bootstrap
function allows us to define a statistic
calculated on the nb
resamples, control the degree of smoothing by
smo
argument and represent the confidence ball with level
1-\alpha
as those resamples that fulfill the condition of
belonging to CB(\alpha)
. The statistic
used by
default is the mean (func.mean
) but also other depth-based
functions can be used (see help(Descriptive)
).
statistic
: fdata
class object with the statistic estimate from nb
bootstrap samples.
dband
: Bootstrap estimate of (1-alpha)%
distance.
rep.dist
: Distance from every replicate.
resamples
: fdata
class object with the bootstrap resamples.
fdataobj
: fdata
class object.
Manuel Febrero-Bande, Manuel Oviedo de la Fuente manuel.oviedo@udc.es
Cuevas A., Febrero-Bande, M. and Fraiman, R. (2007). Robust estimation and classification for functional data via projection-based depth notions. Computational Statistics 22, 3: 481-496.
Cuevas A., Febrero-Bande, M., Fraiman R. 2006. On the use of bootstrap for estimating functions with functional data. Computational Statistics and Data Analysis 51: 1063-1074.
Febrero-Bande, M., Oviedo de la Fuente, M. (2012). Statistical Computing in Functional Data Analysis: The R Package fda.usc. Journal of Statistical Software, 51(4), 1-28. https://www.jstatsoft.org/v51/i04/
See Also as Descriptive
## Not run:
data(tecator)
absorp<-tecator$absorp.fdata
# Time consuming
#Bootstrap for Trimmed Mean with depth mode
out.boot=fdata.bootstrap(absorp,statistic=func.trim.FM,nb=200,draw=TRUE)
names(out.boot)
#Bootstrap for Median with with depth mode
control=list("col"=c("grey","blue","cyan"),"lty"=c(2,1,1),"lwd"=c(1,3,1))
out.boot=fdata.bootstrap(absorp,statistic=func.med.mode,
draw=TRUE,draw.control=control)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.