| flm.test | R Documentation |
The function flm.test tests the composite null hypothesis of
a Functional Linear Model with scalar response (FLM),
H_0:\,Y=\big<X,\beta\big>+\epsilon,
versus
a general alternative. If \beta=\beta_0 is provided, then the
simple hypothesis H_0:\,Y=\big<X,\beta_0\big>+\epsilon is tested.
The testing of the null hypothesis is done by a Projected Cramer-von Mises statistic (see Details).
flm.test(
X.fdata,
Y,
beta0.fdata = NULL,
B = 5000,
est.method = "pls",
p = NULL,
type.basis = "bspline",
verbose = TRUE,
plot.it = TRUE,
B.plot = 100,
G = 200,
...
)
X.fdata |
Functional covariate for the FLM. The object must be in the class
|
Y |
Scalar response for the FLM. Must be a vector with the same number of elements
as functions are in |
beta0.fdata |
Functional parameter for the simple null hypothesis, in the |
B |
Number of bootstrap replicates to calibrate the distribution of the test statistic.
|
est.method |
Estimation method for the unknown parameter
|
p |
Number of elements of the basis considered. If it is not given, an optimal |
type.basis |
Type of basis used to represent the functional process. Depending on the hypothesis, it will have a different interpretation:
|
verbose |
Either to show or not information about computing progress. |
plot.it |
Either to show or not a graph of the observed trajectory,
and the bootstrap trajectories under the null composite hypothesis, of the
process |
B.plot |
Number of bootstrap trajectories to show in the resulting plot of the test.
As the trajectories shown are the first |
G |
Number of projections used to compute the trajectories of the process
|
... |
Further arguments passed to create.basis. |
The Functional Linear Model with scalar response (FLM), is defined as
Y=\big<X,\beta\big>+\epsilon, for a functional process
X such that E[X(t)]=0, E[X(t)\epsilon]=0
for all t and for a scalar variable Y such that E[Y]=0.
Then, the test assumes that Y and X.fdata are centred and will automatically
center them. So, bear in mind that when you apply the test for Y and X.fdata,
actually, you are applying it to Y-mean(Y) and fdata.cen(X.fdata)$Xcen.
The test statistic corresponds to the Cramer-von Mises norm of the Residual Marked
empirical Process based on Projections R_n(u,\gamma) defined in
Garcia-Portugues et al. (2014).
The expression of this process in a p-truncated basis of the space L^2[0,T]
leads to the p-multivariate process R_{n,p}\big(u,\gamma^{(p)}\big),
whose Cramer-von Mises norm is computed.
The choice of an appropriate p to represent the functional process X,
in case that is not provided, is done via the estimation of \beta for the composite
hypothesis. For the simple hypothesis, as no estimation of \beta is done, the choice
of p depends only on the functional process X. As the result of the test may
change for different p's, we recommend to use an automatic criterion to select p
instead of provide a fixed one.
The distribution of the test statistic is approximated by a wild bootstrap resampling on the
residuals, using the golden section bootstrap.
Finally, the graph shown if plot.it=TRUE represents the observed trajectory, and the
bootstrap trajectories under the null, of the process RMPP integrated on the projections:
R_n(u)\approx\frac{1}{G}\sum_{g=1}^G R_n(u,\gamma_g),
where \gamma_g are simulated as Gaussians processes. This gives a graphical idea of
how distant is the observed trajectory from the null hypothesis.
An object with class "htest" whose underlying structure is a list containing
the following components:
statistic: The value of the test statistic.
boot.statistics: A vector of length B with the values of the bootstrap test statistics.
p.value: The p-value of the test.
method: The method used.
B: The number of bootstrap replicates used.
type.basis: The type of basis used.
beta.est: The estimated functional parameter \beta in the composite
hypothesis. For the simple hypothesis, the given beta0.fdata.
p: The number of basis elements passed or automatically chosen.
ord: The optimal order for PC and PLS given by fregre.pc.cv and fregre.pls.cv. For other methods, it is set to 1:p.
data.name: The character string "Y=<X,b>+e".
No NA's are allowed neither in the functional covariate nor in the scalar response.
Eduardo Garcia-Portugues. Please, report bugs and suggestions to edgarcia@est-econ.uc3m.es
Escanciano, J. C. (2006). A consistent diagnostic test for regression models using projections. Econometric Theory, 22, 1030-1051. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1017/S0266466606060506")}
Garcia-Portugues, E., Gonzalez-Manteiga, W. and Febrero-Bande, M. (2014). A goodness–of–fit test for the functional linear model with scalar response. Journal of Computational and Graphical Statistics, 23(3), 761-778. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1080/10618600.2013.812519")}
Adot, PCvM.statistic, rwild,
flm.Ftest, dfv.test,
fregre.pc, fregre.pls, fregre.basis,
fregre.pc.cv, fregre.pls.cv,
fregre.basis.cv, optim.basis,
create.basis
# Simulated example #
X=rproc2fdata(n=100,t=seq(0,1,l=101),sigma="OU")
beta0=fdata(mdata=cos(2*pi*seq(0,1,l=101))-(seq(0,1,l=101)-0.5)^2+
rnorm(101,sd=0.05),argvals=seq(0,1,l=101),rangeval=c(0,1))
Y=inprod.fdata(X,beta0)+rnorm(100,sd=0.1)
dev.new(width=21,height=7)
par(mfrow=c(1,3))
plot(X,main="X")
plot(beta0,main="beta0")
plot(density(Y),main="Density of Y",xlab="Y",ylab="Density")
rug(Y)
## Not run:
# Composite hypothesis: do not reject FLM
pcvm.sim=flm.test(X,Y,B=50,B.plot=50,G=100,plot.it=TRUE)
pcvm.sim
flm.test(X,Y,B=5000)
# Estimated beta
dev.new()
plot(pcvm.sim$beta.est)
# Simple hypothesis: do not reject beta=beta0
flm.test(X,Y,beta0.fdata=beta0,B=50,B.plot=50,G=100)
flm.test(X,Y,beta0.fdata=beta0,B=5000)
# AEMET dataset #
data(aemet)
# Remove the 5\
dev.new()
res.FM=depth.FM(aemet$temp,draw=TRUE)
qu=quantile(res.FM$dep,prob=0.05)
l=which(res.FM$dep<=qu)
lines(aemet$temp[l],col=3)
aemet$df$name[l]
# Data without outliers
wind.speed=apply(aemet$wind.speed$data,1,mean)[-l]
temp=aemet$temp[-l]
# Exploratory analysis: accept the FLM
pcvm.aemet=flm.test(temp,wind.speed,est.method="pls",B=100,B.plot=50,G=100)
pcvm.aemet
# Estimated beta
dev.new()
plot(pcvm.aemet$beta.est,lwd=2,col=2)
# B=5000 for more precision on calibration of the test: also accept the FLM
flm.test(temp,wind.speed,est.method="pls",B=5000)
# Simple hypothesis: rejection of beta0=0? Limiting p-value...
dat=rep(0,length(temp$argvals))
flm.test(temp,wind.speed, beta0.fdata=fdata(mdata=dat,argvals=temp$argvals,
rangeval=temp$rangeval),B=100)
flm.test(temp,wind.speed, beta0.fdata=fdata(mdata=dat,argvals=temp$argvals,
rangeval=temp$rangeval),B=5000)
# Tecator dataset #
data(tecator)
names(tecator)
absorp=tecator$absorp.fdata
ind=1:129 # or ind=1:215
x=absorp[ind,]
y=tecator$y$Fat[ind]
tt=absorp[["argvals"]]
# Exploratory analysis for composite hypothesis with automatic choose of p
pcvm.tecat=flm.test(x,y,B=100,B.plot=50,G=100)
pcvm.tecat
# B=5000 for more precision on calibration of the test: also reject the FLM
flm.test(x,y,B=5000)
# Distribution of the PCvM statistic
plot(density(pcvm.tecat$boot.statistics),lwd=2,xlim=c(0,10),
main="PCvM distribution", xlab="PCvM*",ylab="Density")
rug(pcvm.tecat$boot.statistics)
abline(v=pcvm.tecat$statistic,col=2,lwd=2)
legend("top",legend=c("PCvM observed"),lwd=2,col=2)
# Simple hypothesis: fixed p
dat=rep(0,length(x$argvals))
flm.test(x,y,beta0.fdata=fdata(mdata=dat,argvals=x$argvals,
rangeval=x$rangeval),B=100,p=11)
# Simple hypothesis, automatic choose of p
flm.test(x,y,beta0.fdata=fdata(mdata=dat,argvals=x$argvals,
rangeval=x$rangeval),B=100)
flm.test(x,y,beta0.fdata=fdata(mdata=dat,argvals=x$argvals,
rangeval=x$rangeval),B=5000)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.