| classif.np | R Documentation |
Fits Nonparametric Supervised Classification for Functional Data.
classif.np(
group,
fdataobj,
h = NULL,
Ker = AKer.norm,
metric,
weights = "equal",
type.S = S.NW,
par.S = list(),
...
)
classif.knn(
group,
fdataobj,
knn = NULL,
metric,
weights = "equal",
par.S = list(),
...
)
classif.kernel(
group,
fdataobj,
h = NULL,
Ker = AKer.norm,
metric,
weights = "equal",
par.S = list(),
...
)
group |
Factor of length n |
fdataobj |
|
h |
Vector of smoothing parameter or bandwidth. |
Ker |
Type of kernel used. |
metric |
Metric function, by default |
weights |
weights. |
type.S |
Type of smothing matrix |
par.S |
List of parameters for |
... |
Arguments to be passed for |
knn |
Vector of number of nearest neighbors considered. |
Make the group classification of a training dataset using kernel or KNN
estimation: Kernel.
Different types of metric funtions can be used.
fdataobj: fdata class object.
group: Factor of length n.
group.est: Estimated vector groups.
prob.group: Matrix of predicted class probabilities. For each functional point shows the probability of each possible group membership.
max.prob: Highest probability of correct classification.
h.opt: Optimal smoothing parameter or bandwidht estimated.
D: Matrix of distances of the optimal quantile distance hh.opt.
prob.classification: Probability of correct classification by group.
misclassification: Vector of probability of misclassification by number of neighbors knn.
h: Vector of smoothing parameter or bandwidht.
C: A call of function classif.kernel.
If fdataobj is a data.frame the function considers the case of
multivariate covariates.
metric.dist function is used to
compute the distances between the rows of a data matrix (as
dist function.
Manuel Febrero-Bande, Manuel Oviedo de la Fuente manuel.oviedo@udc.es
Ferraty, F. and Vieu, P. (2006). Nonparametric functional data analysis. Springer Series in Statistics, New York.
Ferraty, F. and Vieu, P. (2006). NPFDA in practice. Free access on line at https://www.math.univ-toulouse.fr/~ferraty/SOFTWARES/NPFDA/
See Also as predict.classif
## Not run:
data(phoneme)
mlearn <- phoneme[["learn"]]
glearn <- phoneme[["classlearn"]]
h <- 9:19
out <- classif.np(glearn,mlearn,h=h)
summary(out)
head(round(out$prob.group,4))
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.