R/permutation.R

Defines functions one.permu fect.permu

###################################################################
## permutation
###################################################################
fect.permu <- function(Y,
                       X,
                       D,
                       I,
                       permu.dimension = 'time',
                       r.cv = NULL,
                       lambda.cv = NULL,
                       m = 2, 
                       method = "ife",
                       degree = 2,
                       knots = NULL,
                       force,                      
                       tol,
                       norm.para,
                       nboots,
                       parallel = TRUE,
                       cores = NULL) {

    TT <- dim(Y)[1]
    n.shuffle <- TT %/% m
    t.pos <- rep(1:n.shuffle, each = m)
    if (TT > n.shuffle * m) {
        t.pos <- c(t.pos, rep(n.shuffle + 1, TT - n.shuffle * m))
    }
    tt <- 1:TT 
    ## list 
    l.tt <- split(tt, t.pos)

    if(permu.dimension == 'time'){
        sub.permu <- function() {

            sub.pos <- c()
            tt.length <- length(l.tt)
            one.rank <- sample(1:tt.length, tt.length, replace = FALSE)
            for (i in 1:tt.length) {
                sub.pos <- c(sub.pos, unlist(l.tt[[one.rank[i]]]))
            }
            Y.permu <- as.matrix(Y[sub.pos, ])
            I.permu <- as.matrix(I[sub.pos, ])
            #D.permu <- as.matrix(D[sub.pos, ])
            if (!is.null(X)) {
                X.permu <- X[sub.pos,,,drop = FALSE]
            }
            result <- try(one.permu(Y.permu, 
                                    X.permu, 
                                    D,  
                                    I.permu, 
                                    r.cv, 
                                    lambda.cv, 
                                    method,
                                    degree,
                                    knots,
                                    force, 
                                    tol,
                                    norm.para), silent = TRUE)


            if ('try-error' %in% class(result)) {
                return(NA)
            } else {
                return(result)
            }
        }        
    }

    if(permu.dimension == 'unit'){
        NN <- dim(Y)[2]
        index.NN <- c(1:NN)
    
        sub.permu <- function() {

            sample.unit <- sample(index.NN,
                                  size=length(index.NN),
                                  replace=FALSE)

            Y.permu <- as.matrix(Y[, sample.unit])
            I.permu <- as.matrix(I[, sample.unit])
            if (!is.null(X)) {
                X.permu <- X[,sample.unit,,drop = FALSE]
            }
            result <- try(one.permu(Y.permu, 
                                    X.permu, 
                                    D,  
                                    I.permu, 
                                    r.cv, 
                                    lambda.cv, 
                                    method,
                                    degree,
                                    knots,
                                    force, 
                                    tol,
                                    norm.para), silent = TRUE)


            if ('try-error' %in% class(result)) {
                return(NA)
            } else {
                return(result)
            }
        }  
    }


    att.avg.permu <- rep(NA, nboots)

    if (parallel == TRUE) { 
        permu.out <- foreach(j=1:nboots, 
                             .inorder = FALSE,
                             .export = c("one.permu"),
                             .packages = c("fect")
                             ) %dopar% {
                                 return(sub.permu())
                             }

        for (j in 1:nboots) { 
            att.avg.permu[j] <- permu.out[[j]]
        } 
    } else {
        for (j in 1:nboots) { 
            permu <- sub.permu() 
            att.avg.permu[j] <- permu
            ## report progress
            if (j%%100 == 0)  {
                message(".")   
            }  
        }  
    }

    if (sum(is.na(c(att.avg.permu))) > 0) {
        permu.rm <- which(is.na(c(att.avg.permu)))
        att.avg.permu <- att.avg.permu[-permu.rm]
    }

    message(length(att.avg.permu), " permutes\n", sep = "") 

    return(att.avg.permu)

}


## sub-function

one.permu <- function(Y, # Outcome variable, (T*N) matrix
                      X, # Explanatory variables:  (T*N*p) array
                      D, #  Indicator for treated unit (tr==1) 
                      I, 
                      r.cv = 0, # initial number of factors considered if CV==1
                      lambda.cv = 1, 
                      method = "fe",
                      degree = 2,
                      knots = NULL, 
                      force, 
                      tol, # tolerance level
                      norm.para = NULL) {  
    
    ##-------------------------------##
    ## Parsing data
    ##-------------------------------##  
    placebo.pos <- na.pos <- NULL
    res.sd1 <- res.sd2 <- NULL

    ## unit id and time
    TT <- dim(Y)[1]
    N <- dim(Y)[2]
    if (is.null(X) == FALSE) {
        p <- dim(X)[3]
    } else {
        p <- 0
        X <- array(0, dim = c(1, 1, 0))
    }

    ## observed indicators:
    II <- I
    II[which(D == 1)] <- 0

    ## remove period when no obserbations are under control
    T0 <- apply(II, 1, sum)
    XX <- NULL
    if (min(T0) == 0) {
        t0.pos <- which(T0 == 0)
        TT <- TT - length(t0.pos)
        if (TT <= 2) {
            stop("No enough observations under control.\n")
        }
        Y <- as.matrix(Y[-t0.pos,])
        D <- as.matrix(D[-t0.pos,])
        I <- as.matrix(I[-t0.pos,])
        II <- as.matrix(II[-t0.pos,])
        if (is.null(X) == FALSE) {
            XX <- array(NA, dim = c(TT, N, p))
            for (i in 1:p) {
                subX <- X[,,i]
                XX[,,i] <- as.matrix(subX[-t0.pos,])
            }
            X <- XX
        }
    }

    ## replicate data
    YY <- Y
    YY[which(II == 0)] <- 0 ## reset to 0 
    D[which(I == 0)] <- 0
    oci <- which(c(II) == 1)

    if (sum(D) == 0) {
        stop("No valid observations under treatment.\n")
    }

    if (method %in% c("polynomial","bspline")){
        stop("Doesn't support in this version.")
    } 
    else {
        ## initial fit using fastplm
        data.ini <- matrix(NA, (TT*N), (2 + 1 + p))
        data.ini[, 2] <- rep(1:N, each = TT)         ## unit fe
        data.ini[, 3] <- rep(1:TT, N)                ## time fe
        data.ini[, 1] <- c(Y)                        ## outcome
        if (p > 0) {                                 ## covar
            for (i in 1:p) {
                data.ini[, (3 + i)] <- c(X[, , i])
            }
        }
        ## observed Y0 indicator:
        initialOut <- Y0 <- beta0 <- FE0 <- xi0 <- factor0 <- NULL

        initialOut <- initialFit(data = data.ini, force = force, oci = oci)
        Y0 <- initialOut$Y0
        beta0 <- initialOut$beta0
        if (p > 0 && sum(is.na(beta0)) > 0) {
            beta0[which(is.na(beta0))] <- 0
        }
        
            ##-------------------------------##
        ## ----------- Main Algorithm ----------- ##
            ##-------------------------------##

        est <- NULL
        if (method == "fe") {
            est <- inter_fe_ub(YY, Y0, X, II, beta0, 0, force = force, tol)
        } else if (method == "ife") {
            est <- inter_fe_ub(YY, Y0, X, II, beta0, r.cv, force = force, tol)
        } else if (method == "mc") {
            est <- inter_fe_mc(YY, Y0, X, II, beta0, 1, lambda.cv, force, tol)
        } 

        if (!is.null(norm.para)) {
            est$fit <- est$fit * norm.para[1]
        }
        Y.ct <- est$fit
    }

    if (!is.null(norm.para)) {
        Y <- Y * norm.para[1]
    }

    eff <- Y - Y.ct  

    att.avg <- sum(eff * D)/(sum(D))
    
    return(abs(att.avg))
} 

Try the fect package in your browser

Any scripts or data that you put into this service are public.

fect documentation built on Oct. 14, 2022, 5:06 p.m.