Nothing
#
# fields is a package for analysis of spatial data written for
# the R software environment.
# Copyright (C) 2022 Colorado School of Mines
# 1500 Illinois St., Golden, CO 80401
# Contact: Douglas Nychka, douglasnychka@gmail.edu,
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with the R software environment if not, write to the Free Software
# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
# or see http://www.r-project.org/Licenses/GPL-2
##END HEADER
##END HEADER
suppressMessages(library(fields))
options(echo=FALSE)
test.for.zero.flag<- 1
data(ozone2)
x<- ozone2$lon.lat
y<- ozone2$y[16,]
temp<- Rad.cov( x,x, p=2)
temp2<- RadialBasis( rdist( x,x), M=2, dimension=2)
temp3<- rdist( x,x)
temp3 <- ifelse( abs(temp3) < 1e-14, 0,log( temp3)*(temp3^2) )
temp3<- radbas.constant( 2,2)*temp3
test.for.zero( temp, temp2, tag="Tps radial basis function 2d")
test.for.zero( temp, temp3, tag="Tps radial basis function 2d")
test.for.zero( temp2,temp3, tag="Tps radial basis function 2d")
set.seed( 123)
xtemp<- matrix( runif( 40*3), ncol=3)
temp<- Rad.cov( xtemp,xtemp, p= 2*4-3)
temp2<- RadialBasis( rdist( xtemp,xtemp), M=4, dimension=3)
temp3<- rdist( xtemp,xtemp)
temp3 <- ifelse( abs(temp3) < 1e-14, 0, temp3^(2*4 -3) )
temp3<- radbas.constant( 4,3)*temp3
test.for.zero( temp, temp2, tag="Tps radial basis function 3d")
test.for.zero( temp, temp3, tag="Tps radial basis function 3d")
test.for.zero( temp2,temp3, tag="Tps radial basis function 3d")
#### testing multiplication of a vector
#### mainly to make the FORTRAN has been written correctly
#### after replacing the ddot call with an explicit do loop
set.seed( 123)
C<- matrix( rnorm( 10*5),10,5 )
x<- matrix( runif( 10*2), 10,2)
temp3<- rdist( x,x)
K<- ifelse( abs(temp3) < 1e-14, 0,log( temp3)*(temp3^2) )
K<- K * radbas.constant( 2,2)
test.for.zero( Rad.cov( x,x,m=2, C=C) , K%*%C, tol=1e-10)
set.seed( 123)
C<- matrix( rnorm( 10*5),10,5 )
x<- matrix( runif( 10*3), 10,3)
temp3<- rdist( x,x)
K<- ifelse( abs(temp3) < 1e-14, 0,(temp3^(2*4-3)) )
K<- K * radbas.constant( 4,3)
test.for.zero( Rad.cov( x,x,m=4, C=C) , K%*%C,tol=1e-10)
##### testing derivative formula
set.seed( 123)
C<- matrix( rnorm( 10*1),10,1 )
x<- matrix( runif( 10*2), 10,2)
temp0<- Rad.cov( x,x, p=4, derivative=1, C=C)
eps<- 1e-6
temp1<- (
Rad.cov( cbind(x[,1]+eps, x[,2]),x, p=4, derivative=0, C=C)
- Rad.cov( cbind(x[,1]-eps, x[,2]),x, p=4, derivative=0, C=C) )/ (2*eps)
temp2<- (
Rad.cov( cbind(x[,1], x[,2]+eps),x, p=4, derivative=0, C=C)
- Rad.cov( cbind(x[,1], x[,2]-eps),x , p=4,derivative=0,C=C) )/ (2*eps)
test.for.zero( temp0[,1], temp1, tag=" der of Rad.cov", tol=1e-6)
test.for.zero( temp0[,2], temp2, tag=" der of Rad.cov", tol=1e-6)
# comparing Rad.cov used by Tps with simpler function called
# by stationary.cov
set.seed( 222)
x<- matrix( runif( 10*2), 10,2)
C<- matrix( rnorm( 10*3),10,3 )
temp<- Rad.cov( x,x, p=2, C=C)
temp2<- RadialBasis( rdist( x,x), M=2, dimension=2)%*%C
test.for.zero( temp, temp2)
#### Basic matrix form for Tps as sanity check
data("ozone2")
s<- ozone2$lon.lat
y<- ozone2$y[16,]
good<- !is.na( y)
s<- s[good,]
y<- y[good]
data(ozone2)
obj<-Tps( s,y, scale.type="unscaled", with.constant=FALSE)
# now work out the matrix expressions explicitly
lam.test<- obj$lambda
N<-length(y)
Tmatrix<- cbind( rep( 1,N), s)
D<- rdist( s,s)
R<- ifelse( D==0, 0, D**2 * log(D))
A<- rbind(
cbind( R+diag(lam.test,N), Tmatrix),
cbind( t(Tmatrix), matrix(0,3,3)))
hold<-solve( A, c( y, rep(0,3)))
c.coef<- hold[1:N]
d.coef<- hold[ (1:3)+N]
zhat<- R%*%c.coef + Tmatrix%*% d.coef
test.for.zero( zhat, obj$fitted.values, tag="Tps 2-d m=2 sanity check")
# out of sample prediction
snew<- rbind( c( -87,41),
c( -81,44)
)
T1<- cbind( 1, snew)
D<- rdist( snew,s)
R1<- ifelse( D==0, 0, D**2 * log(D))
z1<- R1%*%c.coef + T1%*% d.coef
test.for.zero( z1, predict( obj, x=snew), tag="Tps 2-d m=2 sanity predict")
#### test Tps verses Krig note scaling must be the same
out<- Tps( s,y)
out2<- Krig( s,y, Covariance="RadialBasis",
M=2, dimension=2, scale.type="range", method="GCV")
test.for.zero( predict(out), predict(out2), tag="Tps vs. Krig w/ GCV")
# test for fixed lambda
test.for.zero(
predict(out,lambda=.1), predict(out2, lambda=.1),
tag="Tps vs. radial basis w Krig")
#### testing derivative using predict function
set.seed( 233)
x<- matrix( (rnorm( 1000)*2 -1), ncol=2)
y<- (x[,1]**2 + 2*x[,1]*x[,2] - x[,2]**2)/2
out<- Tps( x, y, scale.type="unscaled")
xg<- make.surface.grid( list(x=seq(-.7,.7,,10), y=seq(-.7,.7,,10)) )
test<- cbind( xg[,1] + xg[,2], xg[,1] - xg[,2])
# test<- xg
look<- predictDerivative.Krig( out, x= xg)
test.for.zero( look[,1], test[,1], tol=1e-3)
test.for.zero( look[,2], test[,2], tol=1e-3)
############################################################
### testing Tps version using spatialProcess and Tps.cov
############################################################
set.seed(222)
n<- 50
x1<- cbind( runif(n), runif(n))*100
x2<- cbind( runif(5), runif(5))
#x2<- x1
cardinalX<- cbind( runif(3), runif(3))
m<- 2
# simple check of marginal variances
look<- Tps.cov( x1,x1,cardinalX, m=m)
look2<- Tps.cov( x1,cardinalX=cardinalX, m=m, marginal=TRUE)
test.for.zero(diag(look), look2, tag="Tps.cov marginal" )
## comparing with the Tps function
data("ozone2")
s<- ozone2$lon.lat
y<- ozone2$y[16,]
good<- !is.na( y)
s<- s[good,]
y<- y[good]
##### Tps used as benchmark
out0<- Tps( s,y, scale.type ="unscaled", method="REML")
lambdaHat<- out0$lambda.est[6,1]
fHat<- predict( out0)
cardinalX<- s[1:3,]
out2<- mKrig( s,y, cov.function="Tps.cov",
cov.args= list( cardinalX=cardinalX,
aRange=NA),
m=2,lambda=lambdaHat
)
# should be invariant to cardinal points and not need aRange =NA
# defaults supplied by spatialProcessSetDefaults when detecting Tps.cov
out3<- spatialProcess( s, y, cov.function="Tps.cov",
mKrig.args = list(m=2, NtrA = 200),
lambda=lambdaHat )
out4<- spatialProcess( s, y, cov.function="Tps.cov",
cov.args= list(
aRange=NA),
#REML=TRUE,
verbose=FALSE, gridN=50
)
test.for.zero(fHat, predict( out2, s), tag="Tps vs spatialProcess" )
# other parameters and likelihood
test.for.zero(out0$tauHat.MLE,
out3$summary["tau"],tag="Tps vs spatialProcess tau" )
test.for.zero(fHat, predict( out3, s),
tag="Tps vs spatialProcess default" )
# eff.df exact for spatialProcess because nTrA is larger than
# sample size.
test.for.zero( out0$eff.df, out3$summary["eff.df"],
tag="Eff.df Tps vs spatialProcess")
# look at prediction standard error computation.
SE0<- predictSE( out0, s)
SE3<- predictSE( out3,s)
test.for.zero(SE0, SE3, tag="Tps vs spatialProcess SE")
# compare REML for Tps and spatialProcess
# test.for.zero(out0$lambda.est["REML", "-lnLike Prof"],
# out4$summary["lnProfileREML.FULL"],
# tag="Tps vs spatialProcess REML log like" )
# test.for.zero(out0$lambda.est["REML", "lambda"],
# out4$summary["lambda"],
# tag="Tps vs spatialProcess w REML lambda Hat" )
#
gridList<- fields.x.to.grid( s, nx=20, ny=20)
sGrid<- make.surface.grid( gridList)
fHatGrid0<- predict( out0, sGrid)
fHatGrid3<- predict( out3,sGrid)
test.for.zero(fHatGrid0,fHatGrid3,
tag="Tps vs spatialProcess predictions on a grid")
fHatGrid0SE<- predict( out0, sGrid)
fHatGrid3SE<- predict( out3,sGrid)
test.for.zero(fHatGrid0SE,fHatGrid3SE,
tag="Tps vs spatialProcess SE predictions on a grid")
options( echo=TRUE)
cat("all done testing Tps and spatialProcess with Tps.cov", fill=TRUE)
#
# lambda0<- out0$lambda.est["REML", "lambda"]
#
# Krig.flplike(out0, lambda0)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.