Nothing
#
# fields is a package for analysis of spatial data written for
# the R software environment.
# Copyright (C) 2022 Colorado School of Mines
# 1500 Illinois St., Golden, CO 80401
# Contact: Douglas Nychka, douglasnychka@gmail.edu,
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with the R software environment if not, write to the Free Software
# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
# or see http://www.r-project.org/Licenses/GPL-2
##END HEADER
##END HEADER
suppressMessages(library(fields))
options( echo=FALSE)
test.for.zero.flag<- 1
# test data
data( ozone2)
x<- ozone2$lon.lat
y<- ozone2$y[16,]
#first test addToDiagC
I3 = diag(nrow=3)
twoI3 = I3*2
.Call("addToDiagC", I3, rep(1.0, 3), as.integer(3))
test.for.zero(twoI3, I3, tag="addToDiag")
# turning spam on and off
Krig(x,y, cov.function = "stationary.taper.cov", aRange=1.5,
cov.args= list( spam.format=FALSE,
Taper.args= list( aRange=2.0,k=2, dimension=2) )
) -> out1
Krig(x,y, cov.function = "stationary.taper.cov", lambda=2.0, aRange=1.5,
cov.args= list( spam.format=TRUE,
Taper.args= list( aRange=2.0,k=2, dimension=2) )
) -> out2
temp1<- predict( out1,lambda=2.0)
temp2<- predict( out2)
test.for.zero( temp1, temp2, tag="spam vs no spam")
#
# Omit the NAs
good<- !is.na( y)
x<- x[good,]
y<- y[good]
# now look at mKrig w/o sparse matrix
mKrig( x,y, cov.function="stationary.cov", aRange=10, lambda=.3,
chol.args=list( pivot=FALSE))-> look
Krig( x,y, cov.function="stationary.cov", aRange=10, lambda=.3) -> look2
test.for.zero( look$d, look2$d, tag="Krig mKrig d coef")
test.for.zero( look$c, look2$c, tag="Krig mKrig c coef")
set.seed(123)
xnew<- cbind( (runif(20)-.5)*5, (runif(20)-.5)*5)
temp<- predict( look, xnew)
temp2<- predict( look2, xnew)
test.for.zero( temp, temp2, tag="test of predict at new locations")
# test of matrix of obs
N<- length( y)
Y<- cbind( runif(N), y,runif(N), y)
# collapse == FALSE means each fixed effect found separately for columns of Y
lookY<- mKrig( x,Y, cov.function="stationary.cov",
aRange=10, lambda=.3,collapse=FALSE)
temp3<- predict( lookY, xnew, collapse=FALSE)[,4]
test.for.zero( temp, temp3, tag="test of matrix Y predicts" )
predictSurface( look)-> temp
predictSurface( look2)-> temp2
good<- !is.na( temp2$z)
test.for.zero( temp$z[good], temp2$z[good])
# testing stationary taper covariance
# and also surface prediction
N<- length( y)
mKrig( x,y, cov.function="stationary.taper.cov", aRange=2,
spam.format=FALSE, lambda=.35 )-> look
Krig( x,y, cov.function="stationary.taper.cov", aRange=2,
spam.format=FALSE, lambda=.35)-> look2
predictSurface( look, nx=50, ny=45)-> temp
predictSurface( look2, nx=50, ny=45)-> temp2
good<- !is.na( temp2$z)
test.for.zero( temp$z[good], temp2$z[good], tag="predictSurface with mKrig")
#
# Use Wendland with sparse off and on.
Krig( x,y, cov.function="wendland.cov",
cov.args=list( k=2, aRange=2.8),
lambda=.3, spam.format=FALSE)-> look
mKrig( x,y, cov.function="wendland.cov",k=2, aRange=2.8,
spam.format=FALSE, lambda=.3)-> look2
mKrig( x,y, cov.function="wendland.cov",k=2, aRange=2.8,
spam.format=TRUE, lambda=.3)-> look3
# final tests for predict.
set.seed(223)
xnew<- cbind(runif( N)*.5 + x[,1], runif(N)*.5 + x[,2])
temp<- predict( look, xnew)
temp2<- predict( look2, xnew)
temp3<- predict( look3, xnew)
test.for.zero( temp, temp2, tag="Wendland/no spam")
test.for.zero( temp2, temp3, tag="Wendland/spam")
### testing coefficients for new data
mKrig.coef( look2, cbind(y+1,y+2), collapse=FALSE)-> newc
test.for.zero( look2$c, newc$c[,2], tag="new coef c no spam")
test.for.zero( look2$beta,
c(newc$beta[1,2] -2, newc$beta[2:3,2]), tag="new beta coef no spam")
mKrig.coef( look3, cbind(y+1,y+2), collapse=FALSE)-> newc
test.for.zero( look3$c.coef, newc$c.coef[,2], tag="new coef c spam")
test.for.zero( look3$beta,
c(newc$beta[1,2] -2, newc$beta[2:3,2]),
tag="new beta coef spam")
###
### bigger sample size
set.seed( 334)
N<- 1000
x<- matrix( runif(2*N),ncol=2)
y<- rnorm( N)
nzero <- length( wendland.cov(x,x, k=2,aRange=.1)@entries)
mKrig( x,y, cov.function="wendland.cov",k=2,
aRange=.1, lambda=.3)-> look2
test.for.zero( look2$non.zero.entires, nzero, tag="nzero in call to mKrig")
######
### test out passing to chol
data( ozone2)
y<- ozone2$y[16,]
good<- !is.na( y)
y<-y[good]
x<- ozone2$lon.lat[good,]
# interpolate using defaults (Exponential)
# stationary covariance
mKrig( x,y, aRange = 1.5, lambda=.2)-> out
#
# NOTE this should be identical to
Krig( x,y, aRange=1.5, lambda=.2) -> out2
temp<- predict( out)
temp2<- predict( out2)
test.for.zero( temp, temp2, tag="mKrig vs. Krig for ozone2")
# test passing arguments for chol
set.seed( 334)
N<- 300
x<- matrix( 2*(runif(2*N)-.5),ncol=2)
y<- sin( 3*pi*x[,1])*sin( 3.5*pi*x[,2]) + rnorm( N)*.01
Krig( x,y, Covariance="Wendland",
cov.args= list(k=2, aRange=.8, dimension=2), ,
give.warnings=FALSE,
lambda=1e2) -> out
mKrig( x,y,
cov.function="wendland.cov",k=2, aRange=.8,
lambda=1e2,
chol.args=list( memory=list( nnzR=1e5)),
)-> out2
temp<- predict( out)
temp2<- predict( out2)
test.for.zero( temp, temp2, tol=1e-7, tag="predict Wendland mKrig vs Krig")
# test of fastTps
nx<- 50
ny<- 60
x<- seq( 0,1,,nx)
y<- seq( 0,1,,ny)
gl<- list( x=x, y=y)
xg<- make.surface.grid(gl)
ztrue<- sin( xg[,1]*pi*3)* cos(xg[,2]*pi*2.5)
#image.plot(x,y,matriz( ztrue, nx,ny))
set.seed( 222)
ind<- sample( 1:(nx*ny), 600)
xdat<- xg[ind,]
ydat <- ztrue[ind]
out<- fastTps(xdat, ydat, aRange=.3)
out.p<-predictSurface( out, gridList=gl, extrap=TRUE)
# perfect agreement at data
test.for.zero( ydat, c( out.p$z)[ind],tol=5e-7, tag="fastTps interp1")
#image.plot(x,y,matrix( ztrue, nx,ny)- out.p$z)
rmse<- sqrt(mean( (ztrue- c( out.p$z))^2)/ mean( (ztrue)^2))
test.for.zero( rmse,0,tol=.02, relative=FALSE,tag="fastTps interp2")
##### test precomputing distance matrices:
#
set.seed(1)
# test data
data( ozone2)
x<- ozone2$lon.lat
y<- ozone2$y[16,]
#
# Omit the NAs
good<- !is.na( y)
x<- x[good,]
y<- y[good]
compactDistMat = rdist(x, compact=TRUE)
distMat = rdist(x)
##### test using distance matrix
print("testing using distance matrix")
mKrig(x,y, cov.function = "stationary.cov", lambda=2.0, aRange=1.5) -> out1
mKrig(x,y, cov.args= list(Covariance="Exponential", Distance="rdist", Dist.args=list(compact=TRUE)),
lambda=2.0, aRange=1.5) -> out2
#NOTE: compact distance matrix should not be used by user for fields compatibility reasons
mKrig(x,y, cov.args= list(Covariance="Exponential", Dist.args=list(compact=TRUE)),
lambda=2.0, aRange=1.5, distMat=compactDistMat) -> out3
mKrig(x,y, cov.args= list(Covariance="Exponential"),
lambda=2.0, aRange=1.5, distMat=distMat) -> out4
temp1<- predict( out1)
temp2<- predict( out2)
temp3 = predict( out3)
temp4 = predict( out4)
test.for.zero( temp1, temp2, tag="predict: stationary.cov versus Exp.cov")
test.for.zero( temp2, temp3, tag="predict: no distance matrix versus compact distance matrix")
test.for.zero( temp2, temp4, tag="predict: no distance matrix versus distance matrix")
##### test SE
print("testing using predictSE")
temp1 = predictSE(out1)
temp2 = predictSE(out2)
temp3 = predictSE(out3)
temp4 = predictSE(out4)
test.for.zero( temp1, temp2, tag="predictSE: stationary.cov with exponential versus Exp.cov")
test.for.zero( temp2, temp3, tag="predictSE: no distance matrix versus compact distance matrix")
test.for.zero( temp2, temp4, tag="predictSE: no distance matrix versus distance matrix")
cat("all done with mKrig tests", fill=TRUE)
options( echo=TRUE)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.