pGammaBin | R Documentation |
These functions provide the ability for generating probability function values and cumulative probability function values for the Gamma Binomial Distribution.
pGammaBin(x,n,c,l)
x |
vector of binomial random variables. |
n |
single value for no of binomial trials. |
c |
single value for shape parameter c. |
l |
single value for shape parameter l. |
Mixing Gamma distribution with Binomial distribution will create the the Gamma Binomial distribution. The probability function and cumulative probability function can be constructed and are denoted below.
The cumulative probability function is the summation of probability function values.
P_{GammaBin}[x]= {n \choose x} \sum_{j=0}^{n-x} {n-x \choose j} (-1)^j (\frac{c}{c+x+j})^l
c,l > 0
x = 0,1,2,...,n
n = 1,2,3,...
The mean, variance and over dispersion are denoted as
E_{GammaBin}[x] = (\frac{c}{c+1})^l
Var_{GammaBin}[x] = n^2[(\frac{c}{c+2})^l - (\frac{c}{c+1})^{2l}] + n(\frac{c}{c+1})^l{1-)(\frac{c+1}{c+2})^l}
over dispersion= \frac{(\frac{c}{c+2})^l - (\frac{c}{c+1})^{2l}}{(\frac{c}{c+1})^l[1-(\frac{c}{c+1})^l]}
The output of pGammaBin
gives cumulative probability values in vector form.
grassia1977familyfitODBOD
#plotting the random variables and probability values
col <- rainbow(5)
a <- c(1,2,5,10,0.2)
plot(0,0,main="Gamma-binomial probability function graph",xlab="Binomial random variable",
ylab="Probability function values",xlim = c(0,10),ylim = c(0,0.5))
for (i in 1:5)
{
lines(0:10,dGammaBin(0:10,10,a[i],a[i])$pdf,col = col[i],lwd=2.85)
points(0:10,dGammaBin(0:10,10,a[i],a[i])$pdf,col = col[i],pch=16)
}
dGammaBin(0:10,10,4,.2)$pdf #extracting the pdf values
dGammaBin(0:10,10,4,.2)$mean #extracting the mean
dGammaBin(0:10,10,4,.2)$var #extracting the variance
dGammaBin(0:10,10,4,.2)$over.dis.para #extracting the over dispersion value
#plotting the random variables and cumulative probability values
col <- rainbow(4)
a <- c(1,2,5,10)
plot(0,0,main="Cumulative probability function graph",xlab="Binomial random variable",
ylab="Cumulative probability function values",xlim = c(0,10),ylim = c(0,1))
for (i in 1:4)
{
lines(0:10,pGammaBin(0:10,10,a[i],a[i]),col = col[i])
points(0:10,pGammaBin(0:10,10,a[i],a[i]),col = col[i])
}
pGammaBin(0:10,10,4,.2) #acquiring the cumulative probability values
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.