pMcGBB | R Documentation |
These functions provide the ability for generating probability function values and cumulative probability function values for the McDonald Generalized Beta Binomial Distribution.
pMcGBB(x,n,a,b,c)
x |
vector of binomial random variables. |
n |
single value for no of binomial trials. |
a |
single value for shape parameter alpha representing as a. |
b |
single value for shape parameter beta representing as b. |
c |
single value for shape parameter gamma representing as c. |
Mixing Generalized Beta Type-1 Distribution with Binomial distribution the probability function value and cumulative probability function can be constructed and are denoted below.
The cumulative probability function is the summation of probability function values.
P_{McGBB}(x)= {n \choose x} \frac{1}{B(a,b)} (\sum_{j=0}^{n-x} (-1)^j {n-x \choose j} B(\frac{x}{c}+a+\frac{j}{c},b) )
a,b,c > 0
The mean, variance and over dispersion are denoted as
E_{McGBB}[x]= n\frac{B(a+b,\frac{1}{c})}{B(a,\frac{1}{c})}
Var_{McGBB}[x]= n^2(\frac{B(a+b,\frac{2}{c})}{B(a,\frac{2}{c})}-(\frac{B(a+b,\frac{1}{c})}{B(a,\frac{1}{c})})^2) +n(\frac{B(a+b,\frac{1}{c})}{B(a,\frac{1}{c})}-\frac{B(a+b,\frac{2}{c})}{B(a,\frac{2}{c})})
over dispersion= \frac{\frac{B(a+b,\frac{2}{c})}{B(a,\frac{2}{c})}-(\frac{B(a+b,\frac{1}{c})}{B(a,\frac{1}{c})})^2}{\frac{B(a+b,\frac{1}{c})}{B(a,\frac{1}{c})}-(\frac{B(a+b,\frac{1}{c})}{B(a,\frac{1}{c})})^2}
x = 0,1,2,...n
n = 1,2,3,...
The output of pMcGBB
gives cumulative probability function values in vector form.
manoj2013mcdonaldfitODBOD \insertRefjaniffer2014estimatingfitODBOD \insertRefroozegar2017mcdonaldfitODBOD
#plotting the random variables and probability values
col <- rainbow(5)
a <- c(1,2,5,10,0.6)
plot(0,0,main="Mcdonald generalized beta-binomial probability function graph",
xlab="Binomial random variable",ylab="Probability function values",xlim = c(0,10),ylim = c(0,0.5))
for (i in 1:5)
{
lines(0:10,dMcGBB(0:10,10,a[i],2.5,a[i])$pdf,col = col[i],lwd=2.85)
points(0:10,dMcGBB(0:10,10,a[i],2.5,a[i])$pdf,col = col[i],pch=16)
}
dMcGBB(0:10,10,4,2,1)$pdf #extracting the pdf values
dMcGBB(0:10,10,4,2,1)$mean #extracting the mean
dMcGBB(0:10,10,4,2,1)$var #extracting the variance
dMcGBB(0:10,10,4,2,1)$over.dis.para #extracting the over dispersion value
#plotting the random variables and cumulative probability values
col <- rainbow(4)
a <- c(1,2,5,10)
plot(0,0,main="Cumulative probability function graph",xlab="Binomial random variable",
ylab="Cumulative probability function values",xlim = c(0,10),ylim = c(0,1))
for (i in 1:4)
{
lines(0:10,pMcGBB(0:10,10,a[i],a[i],2),col = col[i])
points(0:10,pMcGBB(0:10,10,a[i],a[i],2),col = col[i])
}
pMcGBB(0:10,10,4,2,1) #acquiring the cumulative probability values
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.