R/HoltWintersNew.R

Defines functions hw holt ses zzhw HoltWintersZZ

Documented in holt hw ses

# Modelled on the HoltWinters() function but with more conventional
# initialization.
# Written by Zhenyu Zhou. 21 October 2012

HoltWintersZZ <- function(x,
                          # smoothing parameters
                          alpha    = NULL, # level
                          beta     = NULL, # trend
                          gamma    = NULL, # seasonal component
                          seasonal = c("additive", "multiplicative"),
                          exponential = FALSE, # exponential
                          phi = NULL, # damp
                          lambda = NULL, # box-cox
                          biasadj = FALSE, # adjusted back-transformed mean for box-cox
                          warnings = TRUE # return optimization warnings
                        ) {
  x <- as.ts(x)
  origx <- x
  seasonal <- match.arg(seasonal)
  m <- frequency(x)
  lenx <- length(x)

  if (!is.null(lambda)) {
    x <- BoxCox(x, lambda)
    lambda <- attr(x, "lambda")
  }

  if (is.null(phi) || !is.numeric(phi)) {
    phi <- 1
  }
  if (!is.null(alpha) && !is.numeric(alpha)) {
    stop("cannot fit models without level ('alpha' must not be 0 or FALSE).")
  }
  if (!all(is.null(c(alpha, beta, gamma))) &&
    any(c(alpha, beta, gamma) < 0 | c(alpha, beta, gamma) > 1)) {
    stop("'alpha', 'beta' and 'gamma' must be within the unit interval.")
  }
  if ((is.null(gamma) || gamma > 0)) {
    if (seasonal == "multiplicative" && any(x <= 0)) {
      stop("data must be positive for multiplicative Holt-Winters.")
    }
  }

  if (m <= 1) {
    gamma <- FALSE
  }

  ## initialise l0, b0, s0
  if (!is.null(gamma) && is.logical(gamma) && !gamma) {
    seasonal <- "none"
    l.start <- x[1L]
    s.start <- 0
    if (is.null(beta) || !is.logical(beta) || beta) {
      if (!exponential) {
        b.start <- x[2L] - x[1L]
      } else {
        b.start <- x[2L] / x[1L]
      }
    }
  } else {
    ## seasonal Holt-Winters
    l.start <- mean(x[1:m])
    b.start <- (mean(x[m + (1:m)]) - l.start) / m
    if (seasonal == "additive") {
      s.start <- x[1:m] - l.start
    } else {
      s.start <- x[1:m] / l.start
    }
  }

  # initialise smoothing parameters
  # lower=c(rep(0.0001,3), 0.8)
  # upper=c(rep(0.9999,3),0.98)
  lower <- c(0, 0, 0, 0)
  upper <- c(1, 1, 1, 1)

  if (!is.null(beta) && is.logical(beta) && !beta) {
    trendtype <- "N"
  } else if (exponential) {
    trendtype <- "M"
  } else {
    trendtype <- "A"
  }

  if (seasonal == "none") {
    seasontype <- "N"
  } else if (seasonal == "multiplicative") {
    seasontype <- "M"
  } else {
    seasontype <- "A"
  }

  ## initialise smoothing parameter
  optim.start <- initparam(
    alpha = alpha, beta = beta, gamma = gamma, phi = 1,
    trendtype = trendtype, seasontype = seasontype, damped = FALSE, lower = lower, upper = upper, m = m,
    bounds = "usual"
  )

  # if(!is.na(optim.start["alpha"]))
  # 	alpha2 <- optim.start["alpha"]
  # else
  # 	alpha2 <- alpha
  # if(!is.na(optim.start["beta"]))
  # 	beta2 <- optim.start["beta"]
  # else
  # 	beta2 <- beta
  # if(!is.na(optim.start["gamma"]))
  # 	gamma2 <- optim.start["gamma"]
  # else
  # 	gamma2 <- gamma

  # 	if(!check.param(alpha = alpha2,beta = beta2, gamma = gamma2,phi=1,lower,upper,bounds="haha",m=m))
  # 	{
  # 		print(paste("alpha=", alpha2, "beta=",beta2, "gamma=",gamma2))
  # 		stop("Parameters out of range")
  # 	}

  ###################################################################################
  # optimisation: alpha, beta, gamma, if any of them is null, then optimise them
  error <- function(p, select) {
    if (select[1] > 0) {
      alpha <- p[1L]
    }
    if (select[2] > 0) {
      beta <- p[1L + select[1]]
    }
    if (select[3] > 0) {
      gamma <- p[1L + select[1] + select[2]]
    }

    zzhw(
      x, lenx = lenx, alpha = alpha, beta = beta, gamma = gamma, seasonal = seasonal, m = m,
      dotrend = (!is.logical(beta) || beta), doseasonal = (!is.logical(gamma) || gamma),
      exponential = exponential, phi = phi, l.start = l.start, b.start = b.start, s.start = s.start
    )$SSE
  }
  select <- as.numeric(c(is.null(alpha), is.null(beta), is.null(gamma)))

  if (sum(select) > 0) # There are parameters to optimize
  {
    sol <- optim(optim.start, error, method = "L-BFGS-B", lower = lower[select], upper = upper[select], select = select)
    if (sol$convergence || any(sol$par < 0 | sol$par > 1)) {
      if (sol$convergence > 50) {
        if (warnings) {
          warning(gettextf("optimization difficulties: %s", sol$message), domain = NA)
        }
      } else {
        stop("optimization failure")
      }
    }
    if (select[1] > 0) {
      alpha <- sol$par[1L]
    }
    if (select[2] > 0) {
      beta <- sol$par[1L + select[1]]
    }
    if (select[3] > 0) {
      gamma <- sol$par[1L + select[1] + select[2]]
    }
  }

  final.fit <- zzhw(
    x, lenx = lenx, alpha = alpha, beta = beta, gamma = gamma, seasonal = seasonal, m = m,
    dotrend = (!is.logical(beta) || beta), doseasonal = (!is.logical(gamma) || gamma),
    exponential = exponential, phi = phi, l.start = l.start, b.start = b.start, s.start = s.start
  )

  tspx <- tsp(x)
  fitted <- ts(final.fit$fitted, frequency = m, start = tspx[1])
  res <- ts(final.fit$residuals, frequency = m, start = tspx[1])
  if (!is.null(lambda)) {
    fitted <- InvBoxCox(fitted, lambda, biasadj, var(final.fit$residuals))
    attr(lambda, "biasadj") <- biasadj
  }
  states <- matrix(final.fit$level, ncol = 1)
  colnames(states) <- "l"
  if (trendtype != "N") {
    states <- cbind(states, b = final.fit$trend)
  }
  if (seasontype != "N") {
    nr <- nrow(states)
    nc <- ncol(states)
    for (i in 1:m)
      states <- cbind(states, final.fit$season[(m - i) + (1:nr)])
    colnames(states)[nc + (1:m)] <- paste("s", 1:m, sep = "")
  }
  states <- ts(states, frequency = m, start = tspx[1] - 1 / m)

  # Package output as HoltWinters class
  # structure(list(fitted    = fitted,
  # 				x        = x,
  # 				alpha    = alpha,
  # 				beta     = beta,
  # 				gamma    = gamma,
  # 				coefficients = c(a = final.fit$level[lenx],
  # 						b = if (!is.logical(beta) || beta) final.fit$trend[lenx],
  # 						s = if (!is.logical(gamma) || gamma) final.fit$season[lenx - m + 1L:m]),
  # 				seasonal  = seasonal,
  # 				exponential = exponential,
  # 				SSE       = final.fit$SSE,
  # 				call      = match.call(),
  # 				level = final.fit$level,
  # 				trend = final.fit$trend,
  # 				season = final.fit$season,
  # 				phi = phi
  # 		),
  # 		class = "HoltWinters"
  # )
  # Package output as ets class
  damped <- (phi < 1.0)
  if (seasonal == "additive") { # This should not happen
    components <- c("A", trendtype, seasontype, damped)
  } else if (seasonal == "multiplicative") {
    components <- c("M", trendtype, seasontype, damped)
  } else if (seasonal == "none" && exponential) {
    components <- c("M", trendtype, seasontype, damped)
  } else { # if(seasonal=="none" & !exponential)
    components <- c("A", trendtype, seasontype, damped)
  }

  initstate <- states[1, ]
  param <- alpha
  names(param) <- "alpha"
  if (trendtype != "N") {
    param <- c(param, beta = beta)
    names(param)[length(param)] <- "beta"
  }
  if (seasontype != "N") {
    param <- c(param, gamma = gamma)
    names(param)[length(param)] <- "gamma"
  }
  if (damped) {
    param <- c(param, phi = phi)
    names(param)[length(param)] <- "phi"
  }

  if (components[1] == "A") {
    sigma2 <- mean(res ^ 2)
  } else {
    sigma2 <- mean((res / fitted) ^ 2)
  }
  structure(
    list(
      fitted = fitted,
      residuals = res,
      components = components,
      x = origx,
      par = c(param, initstate),
      initstate = initstate,
      states = states,
      SSE = final.fit$SSE,
      sigma2 = sigma2,
      call = match.call(),
      m = m,
      lambda = lambda
    ),
    class = "ets"
  )
}

###################################################################################
# filter function
zzhw <- function(x, lenx, alpha=NULL, beta=NULL, gamma=NULL, seasonal="additive", m,
                 dotrend=FALSE, doseasonal=FALSE, l.start=NULL, exponential = NULL, phi=NULL,
                 b.start=NULL, s.start=NULL) {
  if (exponential != TRUE || is.null(exponential)) {
    exponential <- FALSE
  }

  if (is.null(phi) || !is.numeric(phi)) {
    phi <- 1
  }

  # initialise array of l, b, s
  level <- trend <- season <- xfit <- residuals <- numeric(lenx)
  SSE <- 0

  if (!dotrend) {
    beta <- 0
    b.start <- 0
  }
  if (!doseasonal) {
    gamma <- 0
    s.start[1:length(s.start)] <- ifelse(seasonal == "additive", 0, 1)
  }
  lastlevel <- level0 <- l.start
  lasttrend <- trend0 <- b.start
  season0 <- s.start

  for (i in 1:lenx) {
    # definel l(t-1)
    if (i > 1) {
      lastlevel <- level[i - 1]
    }
    # define b(t-1)
    if (i > 1) {
      lasttrend <- trend[i - 1]
    }
    # define s(t-m)
    if (i > m) {
      lastseason <- season[i - m]
    } else {
      lastseason <- season0[i]
    }
    if (is.na(lastseason)) {
      lastseason <- ifelse(seasonal == "additive", 0, 1)
    }

    # stop((lastlevel + phi*lasttrend)*lastseason)

    # forecast for this period i
    if (seasonal == "additive") {
      if (!exponential) {
        xhat <- lastlevel + phi * lasttrend + lastseason
      } else {
        xhat <- lastlevel * lasttrend ^ phi + lastseason
      }
    } else {
      if (!exponential) {
        xhat <- (lastlevel + phi * lasttrend) * lastseason
      } else {
        xhat <- lastlevel * lasttrend ^ phi * lastseason
      }
    }

    xfit[i] <- xhat
    res <- x[i] - xhat
    residuals[i] <- res
    SSE <- SSE + res * res

    # calculate level[i]
    if (seasonal == "additive") {
      if (!exponential) {
        level[i] <- alpha * (x[i] - lastseason) + (1 - alpha) * (lastlevel + phi * lasttrend)
      } else {
        level[i] <- alpha * (x[i] - lastseason) + (1 - alpha) * (lastlevel * lasttrend ^ phi)
      }
    }
    else {
      if (!exponential) {
        level[i] <- alpha * (x[i] / lastseason) + (1 - alpha) * (lastlevel + phi * lasttrend)
      } else {
        level[i] <- alpha * (x[i] / lastseason) + (1 - alpha) * (lastlevel * lasttrend ^ phi)
      }
    }

    # calculate trend[i]
    if (!exponential) {
      trend[i] <- beta * (level[i] - lastlevel) + (1 - beta) * phi * lasttrend
    } else {
      trend[i] <- beta * (level[i] / lastlevel) + (1 - beta) * lasttrend ^ phi
    }

    # calculate season[i]
    if (seasonal == "additive") {
      if (!exponential) {
        season[i] <- gamma * (x[i] - lastlevel - phi * lasttrend) + (1 - gamma) * lastseason
      } else {
        season[i] <- gamma * (x[i] - lastlevel * lasttrend ^ phi) + (1 - gamma) * lastseason
      }
    } else {
      if (!exponential) {
        season[i] <- gamma * (x[i] / (lastlevel + phi * lasttrend)) + (1 - gamma) * lastseason
      } else {
        season[i] <- gamma * (x[i] / (lastlevel * lasttrend ^ phi)) + (1 - gamma) * lastseason
      }
    }
  }

  list(
    SSE = SSE,
    fitted = xfit,
    residuals = residuals,
    level = c(level0, level),
    trend = c(trend0, trend),
    season = c(season0, season),
    phi = phi
  )
}

#' Exponential smoothing forecasts
#'
#' Returns forecasts and other information for exponential smoothing forecasts
#' applied to \code{y}.
#'
#' ses, holt and hw are simply convenient wrapper functions for
#' \code{forecast(ets(...))}.
#'
#' @param y a numeric vector or time series of class \code{ts}
#' @param h Number of periods for forecasting.
#' @param damped If TRUE, use a damped trend.
#' @param seasonal Type of seasonality in \code{hw} model. "additive" or
#' "multiplicative"
#' @param level Confidence level for prediction intervals.
#' @param fan If TRUE, level is set to seq(51,99,by=3). This is suitable for
#' fan plots.
#' @param initial Method used for selecting initial state values. If
#' \code{optimal}, the initial values are optimized along with the smoothing
#' parameters using \code{\link{ets}}. If \code{simple}, the initial values are
#' set to values obtained using simple calculations on the first few
#' observations. See Hyndman & Athanasopoulos (2014) for details.
#' @param exponential If TRUE, an exponential trend is fitted. Otherwise, the
#' trend is (locally) linear.
#' @param alpha Value of smoothing parameter for the level. If \code{NULL}, it
#' will be estimated.
#' @param beta Value of smoothing parameter for the trend. If \code{NULL}, it
#' will be estimated.
#' @param gamma Value of smoothing parameter for the seasonal component. If
#' \code{NULL}, it will be estimated.
#' @param phi Value of damping parameter if \code{damped=TRUE}. If \code{NULL},
#' it will be estimated.
#' @param x Deprecated. Included for backwards compatibility.
#' @param ... Other arguments passed to \code{forecast.ets}.
#' @inheritParams forecast.ts
#'
#' @return An object of class "\code{forecast}".
#'
#' The function \code{summary} is used to obtain and print a summary of the
#' results, while the function \code{plot} produces a plot of the forecasts and
#' prediction intervals.
#'
#' The generic accessor functions \code{fitted.values} and \code{residuals}
#' extract useful features of the value returned by \code{ets} and associated
#' functions.
#'
#' An object of class \code{"forecast"} is a list containing at least the
#' following elements: \item{model}{A list containing information about the
#' fitted model} \item{method}{The name of the forecasting method as a
#' character string} \item{mean}{Point forecasts as a time series}
#' \item{lower}{Lower limits for prediction intervals} \item{upper}{Upper
#' limits for prediction intervals} \item{level}{The confidence values
#' associated with the prediction intervals} \item{x}{The original time series
#' (either \code{object} itself or the time series used to create the model
#' stored as \code{object}).} \item{residuals}{Residuals from the fitted
#' model.} \item{fitted}{Fitted values (one-step forecasts)}
#' @author Rob J Hyndman
#' @seealso \code{\link{ets}}, \code{\link[stats]{HoltWinters}},
#' \code{\link{rwf}}, \code{\link[stats]{arima}}.
#' @references Hyndman, R.J., Koehler, A.B., Ord, J.K., Snyder, R.D. (2008)
#' \emph{Forecasting with exponential smoothing: the state space approach},
#' Springer-Verlag: New York. \url{http://www.exponentialsmoothing.net}.
#'
#' @references Hyndman and Athanasopoulos (2018) \emph{Forecasting: principles
#' and practice}, 2nd edition, OTexts: Melbourne, Australia.
#' \url{https://otexts.com/fpp2/}
#' @keywords ts
#' @examples
#'
#' fcast <- holt(airmiles)
#' plot(fcast)
#' deaths.fcast <- hw(USAccDeaths,h=48)
#' plot(deaths.fcast)
#'
#' @export
ses <- function(y, h = 10, level = c(80, 95), fan = FALSE, initial=c("optimal", "simple"),
                alpha=NULL, lambda=NULL, biasadj=FALSE, x=y, ...) {
  initial <- match.arg(initial)

  if (initial == "optimal") {
    fcast <- forecast(ets(x, "ANN", alpha = alpha, opt.crit = "mse", lambda = lambda, biasadj = biasadj), h, level = level, fan = fan, ...)
  } else {
    fcast <- forecast(HoltWintersZZ(x, alpha = alpha, beta = FALSE, gamma = FALSE, lambda = lambda, biasadj = biasadj), h, level = level, fan = fan, ...)
  }

  fcast$method <- fcast$model$method <- "Simple exponential smoothing"
  fcast$model$call <- match.call()
  fcast$series <- deparse(substitute(y))

  return(fcast)
}

#' @rdname ses
#' @export
holt <- function(y, h = 10, damped = FALSE, level = c(80, 95), fan = FALSE,
                 initial=c("optimal", "simple"), exponential=FALSE, alpha=NULL, beta=NULL,
                 phi=NULL, lambda=NULL, biasadj=FALSE, x=y, ...) {
  initial <- match.arg(initial)
  if (length(y) <= 1L) {
    stop("I need at least two observations to estimate trend.")
  }
  if (initial == "optimal" || damped) {
    if (exponential) {
      fcast <- forecast(ets(x, "MMN", alpha = alpha, beta = beta, phi = phi, damped = damped, opt.crit = "mse", lambda = lambda, biasadj = biasadj), h, level = level, fan = fan, ...)
    } else {
      fcast <- forecast(ets(x, "AAN", alpha = alpha, beta = beta, phi = phi, damped = damped, opt.crit = "mse", lambda = lambda, biasadj = biasadj), h, level = level, fan = fan, ...)
    }
  }
  else {
    fcast <- forecast(
      HoltWintersZZ(x, alpha = alpha, beta = beta, gamma = FALSE, phi = phi, exponential = exponential, lambda = lambda, biasadj = biasadj),
      h, level = level, fan = fan, ...
    )
  }
  if (damped) {
    fcast$method <- "Damped Holt's method"
    if (initial == "simple") {
      warning("Damped Holt's method requires optimal initialization")
    }
  }
  else {
    fcast$method <- "Holt's method"
  }
  if (exponential) {
    fcast$method <- paste(fcast$method, "with exponential trend")
  }
  fcast$model$method <- fcast$method
  fcast$model$call <- match.call()
  fcast$series <- deparse(substitute(y))

  return(fcast)
}

#' @rdname ses
#' @export
hw <- function(y, h = 2 * frequency(x), seasonal = c("additive", "multiplicative"), damped = FALSE,
               level = c(80, 95), fan = FALSE, initial=c("optimal", "simple"), exponential=FALSE,
               alpha=NULL, beta=NULL, gamma=NULL, phi=NULL, lambda=NULL, biasadj=FALSE, x=y, ...) {
  initial <- match.arg(initial)
  seasonal <- match.arg(seasonal)
  m <- frequency(x)
  if (m <= 1L) {
    stop("The time series should have frequency greater than 1.")
  }
  if (length(y) < m + 3) {
    stop(paste("I need at least", m + 3, "observations to estimate seasonality."))
  }
  if (initial == "optimal" || damped) {
    if (seasonal == "additive" && exponential) {
      stop("Forbidden model combination")
    } else if (seasonal == "additive" && !exponential) {
      fcast <- forecast(ets(x, "AAA", alpha = alpha, beta = beta, gamma = gamma, phi = phi, damped = damped, opt.crit = "mse", lambda = lambda, biasadj = biasadj), h, level = level, fan = fan, ...)
    } else if (seasonal != "additive" && exponential) {
      fcast <- forecast(ets(x, "MMM", alpha = alpha, beta = beta, gamma = gamma, phi = phi, damped = damped, opt.crit = "mse", lambda = lambda, biasadj = biasadj), h, level = level, fan = fan, ...)
    } else { # if(seasonal!="additive" & !exponential)
      fcast <- forecast(ets(x, "MAM", alpha = alpha, beta = beta, gamma = gamma, phi = phi, damped = damped, opt.crit = "mse", lambda = lambda, biasadj = biasadj), h, level = level, fan = fan, ...)
    }
  }
  else {
    fcast <- forecast(
      HoltWintersZZ(x, alpha = alpha, beta = beta, gamma = gamma, phi = phi, seasonal = seasonal, exponential = exponential, lambda = lambda, biasadj = biasadj),
      h, level = level, fan = fan, ...
    )
  }
  if (seasonal == "additive") {
    fcast$method <- "Holt-Winters' additive method"
  } else {
    fcast$method <- "Holt-Winters' multiplicative method"
  }
  if (exponential) {
    fcast$method <- paste(fcast$method, "with exponential trend")
  }
  if (damped) {
    fcast$method <- paste("Damped", fcast$method)
    if (initial == "simple") {
      warning("Damped methods require optimal initialization")
    }
  }
  fcast$model$method <- fcast$method
  fcast$model$call <- match.call()
  fcast$series <- deparse(substitute(y))

  return(fcast)
}

Try the forecast package in your browser

Any scripts or data that you put into this service are public.

forecast documentation built on June 22, 2024, 9:20 a.m.