R/fitBATS.R

Defines functions calcLikelihoodNOTransformed calcLikelihood calcModel fitSpecificBATS fitPreviousBATSModel

# TODO:
#
# Author: srazbash
###############################################################################

fitPreviousBATSModel <- function(y, model, biasadj=FALSE) {
  seasonal.periods <- model$seasonal.periods
  if (is.null(seasonal.periods) == FALSE) {
    seasonal.periods <- as.integer(sort(seasonal.periods))
  }
  paramz <- unParameterise(model$parameters$vect, model$parameters$control)
  lambda <- paramz$lambda
  alpha <- paramz$alpha
  beta.v <- paramz$beta
  small.phi <- paramz$small.phi
  gamma.v <- paramz$gamma.v
  ar.coefs <- paramz$ar.coefs
  ma.coefs <- paramz$ma.coefs

  p <- length(ar.coefs)
  q <- length(ma.coefs)

  ## Calculate the variance:
  # 1. Re-set up the matrices
  w <- .Call("makeBATSWMatrix", smallPhi_s = small.phi, sPeriods_s = seasonal.periods, arCoefs_s = ar.coefs, maCoefs_s = ma.coefs, PACKAGE = "forecast")
  g <- .Call("makeBATSGMatrix", as.numeric(alpha), beta.v, gamma.v, seasonal.periods, as.integer(p), as.integer(q), PACKAGE = "forecast")
  F <- makeFMatrix(alpha = alpha, beta = beta.v, small.phi <- small.phi, seasonal.periods = seasonal.periods, gamma.bold.matrix = g$gamma.bold.matrix, ar.coefs = ar.coefs, ma.coefs = ma.coefs)
  # 2. Calculate!
  y.touse <- y
  if (!is.null(lambda)) {
    y.touse <- BoxCox(y, lambda = lambda)
    lambda <- attr(y.touse, "lambda")
  }
  fitted.values.and.errors <- calcModel(y.touse, model$seed.states, F, g$g, w)
  e <- fitted.values.and.errors$e
  fitted.values <- fitted.values.and.errors$y.hat
  variance <- sum((e * e)) / length(y)
  if (!is.null(lambda)) {
    fitted.values <- InvBoxCox(fitted.values, lambda = lambda, biasadj, variance)
  }

  model.for.output <- model
  model.for.output$variance <- variance
  model.for.output$fitted.values <- c(fitted.values)
  model.for.output$errors <- c(e)
  model.for.output$x <- fitted.values.and.errors$x
  model.for.output$y <- y
  attributes(model.for.output$fitted.values) <- attributes(model.for.output$errors) <- attributes(y)
  return(model.for.output)
}

fitSpecificBATS <- function(y, use.box.cox, use.beta, use.damping, seasonal.periods=NULL, starting.params=NULL, x.nought=NULL, ar.coefs=NULL, ma.coefs=NULL, init.box.cox=NULL, bc.lower=0, bc.upper=1, biasadj=FALSE) {
  if (!is.null(seasonal.periods)) {
    seasonal.periods <- as.integer(sort(seasonal.periods))
  }
  ## Meaning/purpose of the first if() statement: If this is the first pass, then use default starting values. Else if it is the second pass, then use the values form the first pass as starting values.
  if (is.null(starting.params)) {
    ## Check for the existence of ARMA() coefficients
    if (!is.null(ar.coefs)) {
      p <- length(ar.coefs)
    } else {
      p <- 0
    }
    if (!is.null(ma.coefs)) {
      q <- length(ma.coefs)
    } else {
      q <- 0
    }
    # Calculate starting values:
    if (sum(seasonal.periods) > 16) {
      alpha <- (1e-6)
    } else {
      alpha <- .09
    }
    if (use.beta) {
      if (sum(seasonal.periods) > 16) {
        beta.v <- (5e-7)
      } else {
        beta.v <- .05
      }
      b <- 0.00
      if (use.damping) {
        small.phi <- .999
      } else {
        small.phi <- 1
      }
    } else {
      beta.v <- NULL
      b <- NULL
      small.phi <- NULL
      use.damping <- FALSE
    }
    if (!is.null(seasonal.periods)) {
      gamma.v <- rep(.001, length(seasonal.periods))
      s.vector <- numeric(sum(seasonal.periods))
      # for(s in seasonal.periods) {
      #  s.vector <- cbind(s.vector, numeric(s))
      # }
    } else {
      gamma.v <- NULL
      s.vector <- NULL
    }
    if (use.box.cox) {
      if (!is.null(init.box.cox)) {
        lambda <- init.box.cox
      } else {
        lambda <- BoxCox.lambda(y, lower = 0, upper = 1.5)
      }
      y.transformed <- BoxCox(y, lambda = lambda)
      lambda <- attr(y.transformed, "lambda")
    } else { # the "else" is not needed at the moment
      lambda <- NULL
    }
  } else {
    paramz <- unParameterise(starting.params$vect, starting.params$control)
    lambda <- paramz$lambda
    alpha <- paramz$alpha
    beta.v <- paramz$beta
    b <- 0
    small.phi <- paramz$small.phi
    gamma.v <- paramz$gamma.v
    if (!is.null(seasonal.periods)) {
      s.vector <- numeric(sum(seasonal.periods))
    } else {
      s.vector <- NULL
    }
    # ar.coefs <- paramz$ar.coefs
    # ma.coefs <- paramz$ma.coefs
    ## Check for the existence of ARMA() coefficients
    if (!is.null(ar.coefs)) {
      p <- length(ar.coefs)
    } else {
      p <- 0
    }
    if (!is.null(ma.coefs)) {
      q <- length(ma.coefs)
    } else {
      q <- 0
    }
  }
  if (is.null(x.nought)) {
    # Start with the seed states equal to zero
    if (!is.null(ar.coefs)) {
      d.vector <- numeric(length(ar.coefs))
    } else {
      d.vector <- NULL
    }
    if (!is.null(ma.coefs)) {
      epsilon.vector <- numeric(length(ma.coefs))
    } else {
      epsilon.vector <- NULL
    }
    x.nought <- makeXMatrix(l = 0, b = b, s.vector = s.vector, d.vector = d.vector, epsilon.vector = epsilon.vector)$x
  }
  ## Optimise the starting values:
  # Make the parameter vector  parameterise
  param.vector <- parameterise(alpha = alpha, beta.v = beta.v, small.phi = small.phi, gamma.v = gamma.v, lambda = lambda, ar.coefs = ar.coefs, ma.coefs = ma.coefs)
  par.scale <- makeParscaleBATS(param.vector$control)

  # w <- makeWMatrix(small.phi=small.phi, seasonal.periods=seasonal.periods, ar.coefs=ar.coefs, ma.coefs=ma.coefs)
  w <- .Call("makeBATSWMatrix", smallPhi_s = small.phi, sPeriods_s = seasonal.periods, arCoefs_s = ar.coefs, maCoefs_s = ma.coefs, PACKAGE = "forecast")
  # g <- makeGMatrix(alpha=alpha, beta=beta.v, gamma.vector=gamma, seasonal.periods=seasonal.periods, p=p, q=q)
  g <- .Call("makeBATSGMatrix", as.numeric(alpha), beta.v, gamma.v, seasonal.periods, as.integer(p), as.integer(q), PACKAGE = "forecast")
  F <- makeFMatrix(alpha = alpha, beta = beta.v, small.phi = small.phi, seasonal.periods = seasonal.periods, gamma.bold.matrix = g$gamma.bold.matrix, ar.coefs = ar.coefs, ma.coefs = ma.coefs)
  D <- F - g$g %*% w$w.transpose

  ## Set up matrices to find the seed states
  if (use.box.cox) {
    y.transformed <- BoxCox(y, lambda = lambda)
    lambda <- attr(y.transformed, "lambda")
    # x.nought <- BoxCox(x.nought, lambda=lambda)
    y.tilda <- calcModel(y.transformed, x.nought, F, g$g, w)$e
  } else {
    y.tilda <- calcModel(y, x.nought, F, g$g, w)$e
  }
  w.tilda.transpose <- matrix(0, nrow = length(y), ncol = ncol(w$w.transpose))
  w.tilda.transpose[1, ] <- w$w.transpose
  # for(i in 2:length(y)) {
  #  w.tilda.transpose[i,] <- w.tilda.transpose[(i-1),] %*% D
  # }
  w.tilda.transpose <- .Call(
    "calcWTilda", wTildaTransposes = w.tilda.transpose, Ds = D,
    PACKAGE = "forecast"
  )
  ## If there is a seasonal component in the model, then the follow adjustment need to be made so that the seed states can be found
  if (!is.null(seasonal.periods)) {
    # drop the lines from w.tilda.transpose that correspond to the last seasonal value of each seasonal period
    list.cut.w <- cutW(use.beta = use.beta, w.tilda.transpose = w.tilda.transpose, seasonal.periods = seasonal.periods, p = p, q = q)
    w.tilda.transpose <- list.cut.w$matrix
    mask.vector <- list.cut.w$mask.vector
    ## Run the regression to find the SEED STATES
    coefs <- lm(t(y.tilda) ~ w.tilda.transpose - 1)$coefficients
    ## Find the ACTUAL SEASONAL seed states
    x.nought <- calcSeasonalSeeds(use.beta = use.beta, coefs = coefs, seasonal.periods = seasonal.periods, mask.vector = mask.vector, p = p, q = q)
  } else {
    # Remove the AR() and MA() bits if they exist
    if ((p != 0) | (q != 0)) {
      end.cut <- ncol(w.tilda.transpose)
      start.cut <- end.cut - (p + q) + 1
      w.tilda.transpose <- w.tilda.transpose[, -c(start.cut:end.cut)]
    }
    x.nought <- lm(t(y.tilda) ~ w.tilda.transpose - 1)$coefficients
    x.nought <- matrix(x.nought, nrow = length(x.nought), ncol = 1)
    ## Replace the AR() and MA() bits if they exist
    if ((p != 0) | (q != 0)) {
      arma.seed.states <- numeric((p + q))
      arma.seed.states <- matrix(arma.seed.states, nrow = length(arma.seed.states), ncol = 1)
      x.nought <- rbind(x.nought, arma.seed.states)
    }
  }
  ####
  # Set up environment
  opt.env <- new.env()
  assign("F", F, envir = opt.env)
  assign("w.transpose", w$w.transpose, envir = opt.env)
  assign("g", g$g, envir = opt.env)
  assign("gamma.bold.matrix", g$gamma.bold.matrix, envir = opt.env)
  assign("y", matrix(y, nrow = 1, ncol = length(y)), envir = opt.env)
  assign("y.hat", matrix(0, nrow = 1, ncol = length(y)), envir = opt.env)
  assign("e", matrix(0, nrow = 1, ncol = length(y)), envir = opt.env)
  assign("x", matrix(0, nrow = length(x.nought), ncol = length(y)), envir = opt.env)
  if (!is.null(seasonal.periods)) {
    tau <- sum(seasonal.periods)
  } else {
    tau <- 0
  }

  ## Second pass of optimisation
  if (use.box.cox) {
    # Un-transform the seed states
    # x.nought.untransformed <- InvBoxCox(x.nought, lambda=lambda)
    assign("x.nought.untransformed", InvBoxCox(x.nought, lambda = lambda), envir = opt.env)
    # Optimise the likelihood function
    optim.like <- optim(par = param.vector$vect, fn = calcLikelihood, method = "Nelder-Mead", opt.env = opt.env, use.beta = use.beta, use.small.phi = use.damping, seasonal.periods = seasonal.periods, p = p, q = q, tau = tau, bc.lower = bc.lower, bc.upper = bc.upper, control = list(maxit = (100 * length(param.vector$vect) ^ 2), parscale = par.scale))
    # Get the parameters out of the param.vector
    paramz <- unParameterise(optim.like$par, param.vector$control)
    lambda <- paramz$lambda
    alpha <- paramz$alpha
    beta.v <- paramz$beta
    small.phi <- paramz$small.phi
    gamma.v <- paramz$gamma.v
    ar.coefs <- paramz$ar.coefs
    ma.coefs <- paramz$ma.coefs
    # Transform the seed states
    x.nought <- BoxCox(opt.env$x.nought.untransformed, lambda = lambda)
    lambda <- attr(x.nought, "lambda")

    ## Calculate the variance:
    # 1. Re-set up the matrices
    # w <- makeWMatrix(small.phi=small.phi, seasonal.periods=seasonal.periods, ar.coefs=ar.coefs, ma.coefs=ma.coefs)
    w <- .Call("makeBATSWMatrix", smallPhi_s = small.phi, sPeriods_s = seasonal.periods, arCoefs_s = ar.coefs, maCoefs_s = ma.coefs, PACKAGE = "forecast")
    # g <- makeGMatrix(alpha=alpha, beta=beta.v, gamma.vector=gamma, seasonal.periods=seasonal.periods, p=p, q=q)
    g <- .Call("makeBATSGMatrix", as.numeric(alpha), beta.v, gamma.v, seasonal.periods, as.integer(p), as.integer(q), PACKAGE = "forecast")
    F <- makeFMatrix(alpha = alpha, beta = beta.v, small.phi = small.phi, seasonal.periods = seasonal.periods, gamma.bold.matrix = g$gamma.bold.matrix, ar.coefs = ar.coefs, ma.coefs = ma.coefs)
    # 2. Calculate!
    y.transformed <- BoxCox(y, lambda = lambda)
    lambda <- attr(y.transformed, "lambda")
    fitted.values.and.errors <- calcModel(y.transformed, x.nought, F, g$g, w)
    e <- fitted.values.and.errors$e
    variance <- sum((e * e)) / length(y)
    fitted.values <- InvBoxCox(fitted.values.and.errors$y.hat, lambda = lambda, biasadj, variance)
    attr(lambda, "biasadj") <- biasadj
    # e <- InvBoxCox(e, lambda=lambda)
    # ee <- y-fitted.values
  } else { # else if we are not using the Box-Cox transformation
    # Optimise the likelihood function
    if (length(param.vector$vect) > 1) {
      optim.like <- optim(par = param.vector$vect, fn = calcLikelihoodNOTransformed, method = "Nelder-Mead", opt.env = opt.env, x.nought = x.nought, use.beta = use.beta, use.small.phi = use.damping, seasonal.periods = seasonal.periods, p = p, q = q, tau = tau, control = list(maxit = (100 * length(param.vector$vect) ^ 2), parscale = par.scale))
    } else {
      optim.like <- optim(par = param.vector$vect, fn = calcLikelihoodNOTransformed, method = "BFGS", opt.env = opt.env, x.nought = x.nought, use.beta = use.beta, use.small.phi = use.damping, seasonal.periods = seasonal.periods, p = p, q = q, tau = tau, control = list(parscale = par.scale))
    }
    # Get the parameters out of the param.vector
    paramz <- unParameterise(optim.like$par, param.vector$control)
    lambda <- paramz$lambda
    alpha <- paramz$alpha
    beta.v <- paramz$beta
    small.phi <- paramz$small.phi
    gamma.v <- paramz$gamma.v
    ar.coefs <- paramz$ar.coefs
    ma.coefs <- paramz$ma.coefs

    ## Calculate the variance:
    # 1. Re-set up the matrices
    # w <- makeWMatrix(small.phi=small.phi, seasonal.periods=seasonal.periods, ar.coefs=ar.coefs, ma.coefs=ma.coefs)
    w <- .Call("makeBATSWMatrix", smallPhi_s = small.phi, sPeriods_s = seasonal.periods, arCoefs_s = ar.coefs, maCoefs_s = ma.coefs, PACKAGE = "forecast")
    # g <- makeGMatrix(alpha=alpha, beta=beta.v, gamma.vector=gamma, seasonal.periods=seasonal.periods, p=p, q=q)
    g <- .Call("makeBATSGMatrix", as.numeric(alpha), beta.v, gamma.v, seasonal.periods, as.integer(p), as.integer(q), PACKAGE = "forecast")
    F <- makeFMatrix(alpha = alpha, beta = beta.v, small.phi <- small.phi, seasonal.periods = seasonal.periods, gamma.bold.matrix = g$gamma.bold.matrix, ar.coefs = ar.coefs, ma.coefs = ma.coefs)
    # 2. Calculate!
    fitted.values.and.errors <- calcModel(y, x.nought, F, g$g, w)
    e <- fitted.values.and.errors$e
    fitted.values <- fitted.values.and.errors$y.hat
    variance <- sum((e * e)) / length(y)
  }
  # Get the likelihood
  likelihood <- optim.like$value
  # Calculate the AIC
  aic <- likelihood + 2 * (length(param.vector$vect) + nrow(x.nought))

  # Make a list object
  model.for.output <- list(lambda = lambda, alpha = alpha, beta = beta.v, damping.parameter = small.phi, gamma.values = gamma.v, ar.coefficients = ar.coefs, ma.coefficients = ma.coefs, likelihood = likelihood, optim.return.code = optim.like$convergence, variance = variance, AIC = aic, parameters = list(vect = optim.like$par, control = param.vector$control), seed.states = x.nought, fitted.values = c(fitted.values), errors = c(e), x = fitted.values.and.errors$x, seasonal.periods = seasonal.periods, y = y)
  class(model.for.output) <- "bats"
  ####
  return(model.for.output)
}

calcModel <- function(y, x.nought, F, g, w) { # w is passed as a list
  length.ts <- length(y)
  x <- matrix(0, nrow = length(x.nought), ncol = length.ts)
  y.hat <- matrix(0, nrow = 1, ncol = length.ts)
  e <- matrix(0, nrow = 1, ncol = length.ts)
  y.hat[, 1] <- w$w.transpose %*% x.nought
  e[, 1] <- y[1] - y.hat[, 1]
  x[, 1] <- F %*% x.nought + g %*% e[, 1]
  y <- matrix(y, nrow = 1, ncol = length.ts)

  loop <- .Call("calcBATS", ys = y, yHats = y.hat, wTransposes = w$w.transpose, Fs = F, xs = x, gs = g, es = e, PACKAGE = "forecast")

  return(list(y.hat = loop$y.hat, e = loop$e, x = loop$x))
}

calcLikelihood <- function(param.vector, opt.env, use.beta, use.small.phi, seasonal.periods, p=0, q=0, tau=0, bc.lower=0, bc.upper=1) {
  # param vector should be as follows: Box-Cox.parameter, alpha, beta, small.phi, gamma.vector, ar.coefs, ma.coefs
  # Put the components of the param.vector into meaningful individual variables
  box.cox.parameter <- param.vector[1]
  alpha <- param.vector[2]
  if (use.beta) {
    if (use.small.phi) {
      small.phi <- param.vector[3]
      beta.v <- param.vector[4]
      gamma.start <- 5
    } else {
      small.phi <- 1
      beta.v <- param.vector[3]
      gamma.start <- 4
    }
  } else {
    small.phi <- NULL
    beta.v <- NULL
    gamma.start <- 3
  }
  if (!is.null(seasonal.periods)) {
    gamma.vector <- param.vector[gamma.start:(gamma.start + length(seasonal.periods) - 1)]
    final.gamma.pos <- gamma.start + length(gamma.vector) - 1
  } else {
    gamma.vector <- NULL
    final.gamma.pos <- gamma.start - 1
  }
  if (p != 0) {
    ar.coefs <- matrix(param.vector[(final.gamma.pos + 1):(final.gamma.pos + p)], nrow = 1, ncol = p)
  } else {
    ar.coefs <- NULL
  }
  if (q != 0) {
    ma.coefs <- matrix(param.vector[(final.gamma.pos + p + 1):length(param.vector)], nrow = 1, ncol = q)
  } else {
    ma.coefs <- NULL
  }
  x.nought <- BoxCox(opt.env$x.nought.untransformed, lambda = box.cox.parameter)
  lambda <- attr(x.nought, "lambda")
  # w <- makeWMatrix(small.phi=small.phi, seasonal.periods=seasonal.periods, ar.coefs=ar.coefs, ma.coefs=ma.coefs)
  # w <- .Call("makeBATSWMatrix", smallPhi_s = small.phi, sPeriods_s = seasonal.periods, arCoefs_s = ar.coefs, maCoefs_s = ma.coefs, PACKAGE = "forecast")
  .Call("updateWtransposeMatrix", wTranspose_s = opt.env$w.transpose, smallPhi_s = small.phi, tau_s = as.integer(tau), arCoefs_s = ar.coefs, maCoefs_s = ma.coefs, p_s = as.integer(p), q_s = as.integer(q), PACKAGE = "forecast")

  # g <- makeGMatrix(alpha=alpha, beta=beta, gamma.vector=gamma.vector, seasonal.periods=seasonal.periods, p=p, q=q)
  # g <- .Call("makeBATSGMatrix", as.numeric(alpha), beta.v, gamma.vector, seasonal.periods, as.integer(p), as.integer(q), PACKAGE="forecast")
  .Call("updateGMatrix", g_s = opt.env$g, gammaBold_s = opt.env$gamma.bold.matrix, alpha_s = alpha, beta_s = beta.v, gammaVector_s = gamma.vector, seasonalPeriods_s = seasonal.periods, PACKAGE = "forecast")

  # F <- makeFMatrix(alpha=alpha, beta=beta.v, small.phi=small.phi, seasonal.periods=seasonal.periods, gamma.bold.matrix=g$gamma.bold.matrix, ar.coefs=ar.coefs, ma.coefs=ma.coefs)
  .Call("updateFMatrix", opt.env$F, small.phi, alpha, beta.v, opt.env$gamma.bold.matrix, ar.coefs, ma.coefs, tau, PACKAGE = "forecast")

  mat.transformed.y <- BoxCox(opt.env$y, box.cox.parameter)
  lambda <- attr(mat.transformed.y, "lambda")
  n <- ncol(opt.env$y)

  .Call("calcBATSFaster", ys = mat.transformed.y, yHats = opt.env$y.hat, wTransposes = opt.env$w.transpose, Fs = opt.env$F, xs = opt.env$x, gs = opt.env$g, es = opt.env$e, xNought_s = x.nought, sPeriods_s = seasonal.periods, betaV = beta.v, tau_s = as.integer(tau), p_s = as.integer(p), q_s = as.integer(q), PACKAGE = "forecast")

  log.likelihood <- n * log(sum(opt.env$e ^ 2)) - 2 * (box.cox.parameter - 1) * sum(log(opt.env$y))

  assign("D", (opt.env$F - opt.env$g %*% opt.env$w.transpose), envir = opt.env)

  if (checkAdmissibility(opt.env, box.cox = box.cox.parameter, small.phi = small.phi, ar.coefs = ar.coefs, ma.coefs = ma.coefs, tau = tau, bc.lower = bc.lower, bc.upper = bc.upper)) {
    return(log.likelihood)
  } else {
    return(10 ^ 20)
  }
}

calcLikelihoodNOTransformed <- function(param.vector, opt.env, x.nought, use.beta, use.small.phi, seasonal.periods, p=0, q=0, tau=0) {
  # The likelihood function without the Box-Cox Transformation
  # param vector should be as follows: alpha, beta, small.phi, gamma.vector, ar.coefs, ma.coefs
  # Put the components of the param.vector into meaningful individual variables
  alpha <- param.vector[1]
  if (use.beta) {
    if (use.small.phi) {
      small.phi <- param.vector[2]
      beta.v <- param.vector[3]
      gamma.start <- 4
    } else {
      small.phi <- 1
      beta.v <- param.vector[2]
      gamma.start <- 3
    }
  } else {
    small.phi <- NULL
    beta.v <- NULL
    gamma.start <- 2
  }
  if (!is.null(seasonal.periods)) {
    gamma.vector <- param.vector[gamma.start:(gamma.start + length(seasonal.periods) - 1)]
    final.gamma.pos <- gamma.start + length(gamma.vector) - 1
  } else {
    gamma.vector <- NULL
    final.gamma.pos <- gamma.start - 1
  }
  if (p != 0) {
    ar.coefs <- matrix(param.vector[(final.gamma.pos + 1):(final.gamma.pos + p)], nrow = 1, ncol = p)
  } else {
    ar.coefs <- NULL
  }
  if (q != 0) {
    ma.coefs <- matrix(param.vector[(final.gamma.pos + p + 1):length(param.vector)], nrow = 1, ncol = q)
  } else {
    ma.coefs <- NULL
  }

  # w <- makeWMatrix(small.phi=small.phi, seasonal.periods=seasonal.periods, ar.coefs=ar.coefs, ma.coefs=ma.coefs)
  # w <- .Call("makeBATSWMatrix", smallPhi_s = small.phi, sPeriods_s = seasonal.periods, arCoefs_s = ar.coefs, maCoefs_s = ma.coefs, PACKAGE = "forecast")
  .Call("updateWtransposeMatrix", wTranspose_s = opt.env$w.transpose, smallPhi_s = small.phi, tau_s = as.integer(tau), arCoefs_s = ar.coefs, maCoefs_s = ma.coefs, p_s = as.integer(p), q_s = as.integer(q), PACKAGE = "forecast")
  # g <- makeGMatrix(alpha=alpha, beta=beta, gamma.vector=gamma.vector, seasonal.periods=seasonal.periods, p=p, q=q)
  # g <- .Call("makeBATSGMatrix", alpha, beta.v, gamma.vector, seasonal.periods, as.integer(p), as.integer(q), PACKAGE="forecast")
  .Call("updateGMatrix", g_s = opt.env$g, gammaBold_s = opt.env$gamma.bold.matrix, alpha_s = alpha, beta_s = beta.v, gammaVector_s = gamma.vector, seasonalPeriods_s = seasonal.periods, PACKAGE = "forecast")

  # F <- makeFMatrix(alpha=alpha, beta=beta.v, small.phi=small.phi, seasonal.periods=seasonal.periods, gamma.bold.matrix=g$gamma.bold.matrix, ar.coefs=ar.coefs, ma.coefs=ma.coefs)
  .Call("updateFMatrix", opt.env$F, small.phi, alpha, beta.v, opt.env$gamma.bold.matrix, ar.coefs, ma.coefs, tau, PACKAGE = "forecast")
  n <- ncol(opt.env$y)

  #########################################################################################
  # e <- calcModel(y=y, x.nought=x.nought, F=F, g=g$g, w=w)$e
  ######################
  #### calcModel() code:
  ##
  # x <- matrix(0, nrow=length(x.nought), ncol=n)
  # y.hat <- matrix(0,nrow=1, ncol=n)
  # e <- matrix(0, nrow=1, ncol=n)
  # opt.env$y.hat[,1] <- w$w.transpose %*% x.nought
  # opt.env$e[,1] <- opt.env$y[,1]-opt.env$y.hat[,1]
  # opt.env$x[,1] <- opt.env$F %*% x.nought + g$g %*% opt.env$e[,1]
  # mat.y <- matrix(opt.env$y, nrow=1, ncol=n)

  .Call("calcBATSFaster", ys = opt.env$y, yHats = opt.env$y.hat, wTransposes = opt.env$w.transpose, Fs = opt.env$F, xs = opt.env$x, gs = opt.env$g, es = opt.env$e, xNought_s = x.nought, sPeriods_s = seasonal.periods, betaV = beta.v, tau_s = as.integer(tau), p_s = as.integer(p), q_s = as.integer(q), PACKAGE = "forecast")
  ##
  ####
  ####################################################################

  log.likelihood <- n * log(sum(opt.env$e * opt.env$e))
  # D <- opt.env$F - g$g %*% w$w.transpose
  assign("D", (opt.env$F - opt.env$g %*% opt.env$w.transpose), envir = opt.env)

  if (checkAdmissibility(opt.env = opt.env, box.cox = NULL, small.phi = small.phi, ar.coefs = ar.coefs, ma.coefs = ma.coefs, tau = tau)) {
    return(log.likelihood)
  } else {
    return(10 ^ 20)
  }
}

Try the forecast package in your browser

Any scripts or data that you put into this service are public.

forecast documentation built on June 22, 2024, 9:20 a.m.