R/forecast.R

Defines functions as.data.frame.forecast as.data.frame.mforecast as.ts.forecast is.forecast subset.forecast forecast.forecast hfitted.default hfitted predict.default plot.forecast plotlmforecast print.summary.forecast summary.forecast print.forecast forecast.default forecast.ts

Documented in as.data.frame.forecast as.data.frame.mforecast as.ts.forecast forecast.default forecast.ts is.forecast plot.forecast print.forecast summary.forecast

#' Forecasting time series
#'
#' \code{forecast} is a generic function for forecasting from time series or
#' time series models. The function invokes particular \emph{methods} which
#' depend on the class of the first argument.
#'
#' For example, the function \code{\link{forecast.Arima}} makes forecasts based
#' on the results produced by \code{\link[stats]{arima}}.
#'
#' If \code{model=NULL},the function \code{\link{forecast.ts}} makes forecasts
#' using \code{\link{ets}} models (if the data are non-seasonal or the seasonal
#' period is 12 or less) or \code{\link{stlf}} (if the seasonal period is 13 or
#' more).
#'
#' If \code{model} is not \code{NULL}, \code{forecast.ts} will apply the
#' \code{model} to the \code{object} time series, and then generate forecasts
#' accordingly.
#'
#' @aliases print.forecast summary.forecast as.data.frame.forecast as.ts.forecast
#'
#' @param object a time series or time series model for which forecasts are
#' required
#' @param h Number of periods for forecasting
#' @param level Confidence level for prediction intervals.
#' @param fan If TRUE, \code{level} is set to \code{seq(51,99,by=3)}. This is
#' suitable for fan plots.
#' @param robust If TRUE, the function is robust to missing values and outliers
#' in \code{object}. This argument is only valid when \code{object} is of class
#' \code{ts}.
#' @param lambda Box-Cox transformation parameter. If \code{lambda="auto"},
#' then a transformation is automatically selected using \code{BoxCox.lambda}.
#' The transformation is ignored if NULL. Otherwise,
#' data transformed before model is estimated.
#' @param find.frequency If TRUE, the function determines the appropriate
#' period, if the data is of unknown period.
#' @param allow.multiplicative.trend If TRUE, then ETS models with
#' multiplicative trends are allowed. Otherwise, only additive or no trend ETS
#' models are permitted.
#' @param model An object describing a time series model; e.g., one of of class
#' \code{ets}, \code{Arima}, \code{bats}, \code{tbats}, or \code{nnetar}.
#' @param ... Additional arguments affecting the forecasts produced. If
#' \code{model=NULL}, \code{forecast.ts} passes these to \code{\link{ets}} or
#' \code{\link{stlf}} depending on the frequency of the time series. If
#' \code{model} is not \code{NULL}, the arguments are passed to the relevant
#' modelling function.
#' @inheritParams BoxCox
#'
#' @return An object of class "\code{forecast}".
#'
#' The function \code{summary} is used to obtain and print a summary of the
#' results, while the function \code{plot} produces a plot of the forecasts and
#' prediction intervals.
#'
#' The generic accessors functions \code{fitted.values} and \code{residuals}
#' extract various useful features of the value returned by
#' \code{forecast$model}.
#'
#' An object of class \code{"forecast"} is a list usually containing at least
#' the following elements: \item{model}{A list containing information about the
#' fitted model} \item{method}{The name of the forecasting method as a
#' character string} \item{mean}{Point forecasts as a time series}
#' \item{lower}{Lower limits for prediction intervals} \item{upper}{Upper
#' limits for prediction intervals} \item{level}{The confidence values
#' associated with the prediction intervals} \item{x}{The original time series
#' (either \code{object} itself or the time series used to create the model
#' stored as \code{object}).} \item{residuals}{Residuals from the fitted model.
#' For models with additive errors, the residuals will be x minus the fitted
#' values.} \item{fitted}{Fitted values (one-step forecasts)}
#' @author Rob J Hyndman
#' @seealso Other functions which return objects of class \code{"forecast"} are
#' \code{\link{forecast.ets}}, \code{\link{forecast.Arima}},
#' \code{\link{forecast.HoltWinters}}, \code{\link{forecast.StructTS}},
#' \code{\link{meanf}}, \code{\link{rwf}}, \code{\link{splinef}},
#' \code{\link{thetaf}}, \code{\link{croston}}, \code{\link{ses}},
#' \code{\link{holt}}, \code{\link{hw}}.
#' @keywords ts
#' @examples
#'
#' WWWusage %>% forecast %>% plot
#' fit <- ets(window(WWWusage, end=60))
#' fc <- forecast(WWWusage, model=fit)
#' @export
forecast.ts <- function(object, h=ifelse(frequency(object) > 1, 2 * frequency(object), 10),
                        level=c(80, 95), fan=FALSE, robust=FALSE, lambda = NULL, biasadj = FALSE, find.frequency = FALSE,
                        allow.multiplicative.trend=FALSE, model=NULL, ...) {
  n <- length(object)
  if (find.frequency) {
    object <- ts(object, frequency = findfrequency(object))
    obj.freq <- frequency(object)
  } else {
    obj.freq <- frequency(object)
  }
  if (robust) {
    object <- tsclean(object, replace.missing = TRUE, lambda = lambda)
  }

  if (!is.null(model)) {
    if (inherits(model, "forecast")) {
      model <- model$model
    }
    if (inherits(model, "ets")) {
      fit <- ets(object, model = model, ...)
    } else if (inherits(model, "Arima")) {
      fit <- Arima(object, model = model, ...)
    } else if (inherits(model, "tbats")) {
      fit <- tbats(object, model = model, ...)
    } else if (inherits(model, "bats")) {
      fit <- bats(object, model = model, ...)
    } else if (inherits(model, "nnetar")) {
      fit <- nnetar(object, model = model, ...)
    } else {
      stop("Unknown model class")
    }
    return(forecast(fit, h = h, level = level, fan = fan))
  }

  if (n > 3) {
    if (obj.freq < 13) {
      out <- forecast(
        ets(object, lambda = lambda, biasadj = biasadj, allow.multiplicative.trend = allow.multiplicative.trend, ...),
        h = h, level = level, fan = fan
      )
    } else if (n > 2 * obj.freq) {
      out <- stlf(
        object, h = h, level = level, fan = fan, lambda = lambda, biasadj = biasadj,
        allow.multiplicative.trend = allow.multiplicative.trend, ...
      )
    } else {
      out <- forecast(
        ets(object, model = "ZZN", lambda = lambda, biasadj = biasadj, allow.multiplicative.trend = allow.multiplicative.trend, ...),
        h = h, level = level, fan = fan
      )
    }
  }
  else {
    out <- meanf(object, h = h, level = level, fan = fan, lambda = lambda, biasadj = biasadj, ...)
  }
  out$series <- deparse(substitute(object))
  return(out)
}

#' @rdname forecast.ts
#' @method forecast default
#' @export
forecast.default <- function(object, ...) forecast.ts(object, ...)

#' @rdname forecast.ts
#' @export
print.forecast <- function(x, ...) {
  print(as.data.frame(x))
}

#' @export
summary.forecast <- function(object, ...) {
  class(object) <- c("summary.forecast", class(object))
  object
}

#' @export
print.summary.forecast <- function(x, ...) {
  cat(paste("\nForecast method:", x$method))
  #    cat(paste("\n\nCall:\n",deparse(x$call)))
  cat(paste("\n\nModel Information:\n"))
  print(x$model)
  cat("\nError measures:\n")
  print(accuracy(x))
  if (is.null(x$mean)) {
    cat("\n No forecasts\n")
  } else {
    cat("\nForecasts:\n")
    NextMethod()
  }
}

plotlmforecast <- function(object, PI, shaded, shadecols, col, fcol, pi.col, pi.lty,
                           xlim=NULL, ylim, main, ylab, xlab, ...) {
  xvar <- attributes(terms(object$model))$term.labels
  if (length(xvar) > 1) {
    stop("Forecast plot for regression models only available for a single predictor")
  } else if (ncol(object$newdata) == 1) { # Make sure column has correct name
    colnames(object$newdata) <- xvar
  }
  if (is.null(xlim)) {
    xlim <- range(object$newdata[, xvar], model.frame(object$model)[, xvar])
  }
  if (is.null(ylim)) {
    ylim <- range(object$upper, object$lower, fitted(object$model) + residuals(object$model))
  }
  plot(
    formula(object$model), data = model.frame(object$model),
    xlim = xlim, ylim = ylim, xlab = xlab, ylab = ylab, main = main, col = col, ...
  )
  abline(object$model)
  nf <- length(object$mean)
  if (PI) {
    nint <- length(object$level)
    idx <- rev(order(object$level))
    if (is.null(shadecols)) {
      # require(colorspace)
      if (min(object$level) < 50) { # Using very small confidence levels.
        shadecols <- rev(colorspace::sequential_hcl(100)[object$level])
      } else { # This should happen almost all the time. Colors mapped to levels.
        shadecols <- rev(colorspace::sequential_hcl(52)[object$level - 49])
      }
    }
    if (length(shadecols) == 1) {
      if (shadecols == "oldstyle") { # Default behaviour up to v3.25.
        shadecols <- heat.colors(nint + 2)[switch(1 + (nint > 1), 2, nint:1) + 1]
      }
    }

    for (i in 1:nf)
    {
      for (j in 1:nint)
      {
        if (shaded) {
          lines(rep(object$newdata[i, xvar], 2), c(object$lower[i, idx[j]], object$upper[i, idx[j]]), col = shadecols[j], lwd = 6)
        } else {
          lines(rep(object$newdata[i, xvar], 2), c(object$lower[i, idx[j]], object$upper[i, idx[j]]), col = pi.col, lty = pi.lty)
        }
      }
    }
  }
  points(object$newdata[, xvar], object$mean, pch = 19, col = fcol)
}


#' Forecast plot
#'
#' Plots historical data with forecasts and prediction intervals.
#'
#' \code{autoplot} will produce a ggplot object.
#'
#' plot.splineforecast autoplot.splineforecast
#' @param x Forecast object produced by \code{\link{forecast}}.
#' @param object Forecast object produced by \code{\link{forecast}}. Used for
#' ggplot graphics (S3 method consistency).
#' @param include number of values from time series to include in plot. Default
#' is all values.
#' @param PI Logical flag indicating whether to plot prediction intervals.
#' @param showgap If \code{showgap=FALSE}, the gap between the historical
#' observations and the forecasts is removed.
#' @param shaded Logical flag indicating whether prediction intervals should be
#' shaded (\code{TRUE}) or lines (\code{FALSE})
#' @param shadebars Logical flag indicating if prediction intervals should be
#' plotted as shaded bars (if \code{TRUE}) or a shaded polygon (if
#' \code{FALSE}).  Ignored if \code{shaded=FALSE}. Bars are plotted by default
#' if there are fewer than five forecast horizons.
#' @param shadecols Colors for shaded prediction intervals. To get default
#' colors used prior to v3.26, set \code{shadecols="oldstyle"}.
#' @param col Colour for the data line.
#' @param fcol Colour for the forecast line.
#' @param flty Line type for the forecast line.
#' @param flwd Line width for the forecast line.
#' @param pi.col If \code{shaded=FALSE} and \code{PI=TRUE}, the prediction
#' intervals are plotted in this colour.
#' @param pi.lty If \code{shaded=FALSE} and \code{PI=TRUE}, the prediction
#' intervals are plotted using this line type.
#' @param ylim Limits on y-axis.
#' @param main Main title.
#' @param xlab X-axis label.
#' @param ylab Y-axis label.
#' @param series Matches an unidentified forecast layer with a coloured object
#' on the plot.
#' @param fitcol Line colour for fitted values.
#' @param type 1-character string giving the type of plot desired. As for
#' \code{\link[graphics]{plot.default}}.
#' @param pch Plotting character (if \code{type=="p"} or \code{type=="o"}).
#' @param ... Other plotting parameters to affect the plot.
#' @return None.
#' @author Rob J Hyndman & Mitchell O'Hara-Wild
#' @seealso \code{\link[stats]{plot.ts}}
#' @references Hyndman and Athanasopoulos (2018) \emph{Forecasting: principles
#' and practice}, 2nd edition, OTexts: Melbourne, Australia.
#' \url{https://otexts.com/fpp2/}
#' @keywords ts
#' @examples
#' library(ggplot2)
#'
#' wine.fit <- hw(wineind,h=48)
#' plot(wine.fit)
#' autoplot(wine.fit)
#'
#' fit <- tslm(wineind ~ fourier(wineind,4))
#' fcast <- forecast(fit, newdata=data.frame(fourier(wineind,4,20)))
#' autoplot(fcast)
#'
#' @export
plot.forecast <- function(x, include, PI=TRUE, showgap = TRUE, shaded=TRUE, shadebars=(length(x$mean) < 5),
                          shadecols=NULL, col=1, fcol=4, pi.col=1, pi.lty=2, ylim=NULL, main=NULL, xlab="",
                          ylab="", type="l", flty = 1, flwd = 2, ...) {
  if (is.element("x", names(x))) { # Assume stored as x
    xx <- x$x
  } else {
    xx <- NULL
  }
  if (is.null(x$lower) || is.null(x$upper) || is.null(x$level)) {
    PI <- FALSE
  }
  else if (!is.finite(max(x$upper))) {
    PI <- FALSE
  }

  if (!shaded) {
    shadebars <- FALSE
  }
  if (is.null(main)) {
    main <- paste("Forecasts from ", x$method, sep = "")
  }
  if (PI) {
    x$upper <- as.matrix(x$upper)
    x$lower <- as.matrix(x$lower)
  }

  if (is.element("lm", class(x$model)) && !is.element("ts", class(x$mean))) # Non time series linear model
  {
    plotlmforecast(
      x, PI = PI, shaded = shaded, shadecols = shadecols, col = col, fcol = fcol, pi.col = pi.col, pi.lty = pi.lty,
      ylim = ylim, main = main, xlab = xlab, ylab = ylab, ...
    )
    if (PI) {
      return(invisible(list(mean = x$mean, lower = as.matrix(x$lower), upper = as.matrix(x$upper))))
    } else {
      return(invisible(list(mean = x$mean)))
    }
  }

  # Otherwise assume x is from a time series forecast
  n <- length(xx)
  if (n == 0) {
    include <- 0
  } else if (missing(include)) {
    include <- length(xx)
  }

  # Check if all historical values are missing
  if (n > 0) {
    if (sum(is.na(xx)) == length(xx)) {
      n <- 0
    }
  }
  if (n > 0) {
    xx <- as.ts(xx)
    freq <- frequency(xx)
    strt <- start(xx)
    nx <- max(which(!is.na(xx)))
    xxx <- xx[1:nx]
    include <- min(include, nx)

    if (!showgap) {
      lastObs <- x$x[length(x$x)]
      lastTime <- time(x$x)[length(x$x)]
      x$mean <- ts(c(lastObs, x$mean), start = lastTime, frequency = freq)
      x$upper <- ts(rbind(lastObs, x$upper), start = lastTime, frequency = freq)
      x$lower <- ts(rbind(lastObs, x$lower), start = lastTime, frequency = freq)
    }
  }
  else {
    freq <- frequency(x$mean)
    strt <- start(x$mean)
    nx <- include <- 1
    xx <- xxx <- ts(NA, frequency = freq, end = tsp(x$mean)[1] - 1 / freq)

    if (!showgap) {
      warning("Removing the gap requires historical data, provide this via model$x. Defaulting showgap to TRUE.")
    }
  }

  pred.mean <- x$mean

  if (is.null(ylim)) {
    ylim <- range(c(xx[(n - include + 1):n], pred.mean), na.rm = TRUE)
    if (PI) {
      ylim <- range(ylim, x$lower, x$upper, na.rm = TRUE)
    }
  }
  npred <- length(pred.mean)
  tsx <- is.ts(pred.mean)
  if (!tsx) {
    pred.mean <- ts(pred.mean, start = nx + 1, frequency = 1)
    type <- "p"
  }
  plot(
    ts(c(xxx[(nx - include + 1):nx], rep(NA, npred)), end = tsp(xx)[2] + (nx - n) / freq + npred / freq, frequency = freq),
    xlab = xlab, ylim = ylim, ylab = ylab, main = main, col = col, type = type, ...
  )
  if (PI) {
    if (is.ts(x$upper)) {
      xxx <- time(x$upper)
    }
    else {
      xxx <- tsp(pred.mean)[1] - 1 / freq + (1:npred) / freq
    }
    idx <- rev(order(x$level))
    nint <- length(x$level)
    if (is.null(shadecols)) {
      # require(colorspace)
      if (min(x$level) < 50) { # Using very small confidence levels.
        shadecols <- rev(colorspace::sequential_hcl(100)[x$level])
      } else { # This should happen almost all the time. Colors mapped to levels.
        shadecols <- rev(colorspace::sequential_hcl(52)[x$level - 49])
      }
    }
    if (length(shadecols) == 1) {
      if (shadecols == "oldstyle") { # Default behaviour up to v3.25.
        shadecols <- heat.colors(nint + 2)[switch(1 + (nint > 1), 2, nint:1) + 1]
      }
    }
    for (i in 1:nint)
    {
      if (shadebars) {
        for (j in 1:npred)
        {
          polygon(
            xxx[j] + c(-0.5, 0.5, 0.5, -0.5) / freq, c(rep(x$lower[j, idx[i]], 2), rep(x$upper[j, idx[i]], 2)),
            col = shadecols[i], border = FALSE
          )
        }
      }
      else if (shaded) {
        polygon(
          c(xxx, rev(xxx)), c(x$lower[, idx[i]], rev(x$upper[, idx[i]])),
          col = shadecols[i], border = FALSE
        )
      }
      else if (npred == 1) {
        lines(c(xxx) + c(-0.5, 0.5) / freq, rep(x$lower[, idx[i]], 2), col = pi.col, lty = pi.lty)
        lines(c(xxx) + c(-0.5, 0.5) / freq, rep(x$upper[, idx[i]], 2), col = pi.col, lty = pi.lty)
      }
      else {
        lines(x$lower[, idx[i]], col = pi.col, lty = pi.lty)
        lines(x$upper[, idx[i]], col = pi.col, lty = pi.lty)
      }
    }
  }
  if (npred > 1 && !shadebars && tsx) {
    lines(pred.mean, lty = flty, lwd = flwd, col = fcol)
  } else {
    points(pred.mean, col = fcol, pch = 19)
  }
  if (PI) {
    invisible(list(mean = pred.mean, lower = x$lower, upper = x$upper))
  } else {
    invisible(list(mean = pred.mean))
  }
}

#' @export
predict.default <- function(object, ...) {
  forecast(object, ...)
}

hfitted <- function(object, h=1, FUN=NULL, ...) {
  UseMethod("hfitted")
}

#' @export
hfitted.default <- function(object, h=1, FUN=NULL, ...) {
  if (h == 1) {
    return(fitted(object))
  }
  # Attempt to get model function
  if (is.null(FUN)) {
    FUN <- class(object)
    for (i in FUN) {
      if (exists(i)) {
        if (typeof(eval(parse(text = i)[[1]])) == "closure") {
          FUN <- i
          i <- "Y"
          break
        }
      }
    }
    if (i != "Y") {
      stop("Could not find appropriate function to refit, specify FUN=function")
    }
  }
  x <- getResponse(object)
  tspx <- tsp(x)
  fits <- fitted(object) * NA
  n <- length(fits)
  refitarg <- list(x = NULL, model = object)
  names(refitarg)[1] <- names(formals(FUN))[1]
  fcarg <- list(h = h, biasadj=TRUE, lambda=object$lambda)
  if (FUN == "ets") {
    refitarg$use.initial.values <- TRUE
  }
  for (i in 1:(n - h))
  {
    refitarg[[1]] <- ts(x[1:i], start = tspx[1], frequency = tspx[3])
    if(!is.null(object$xreg) & any(colnames(object$xreg)!="drift")){
      if(any(colnames(object$xreg)=="drift")){
        idx <- which(colnames(object$xreg)=="drift")
        refitarg$xreg <- ts(object$xreg[1:i, -idx], start = tspx[1], frequency = tspx[3])
        fcarg$xreg <- ts(object$xreg[(i + 1):(i + h), -idx], start = tspx[1] + i / tspx[3], frequency = tspx[3])
      }else{
        refitarg$xreg <- ts(object$xreg[1:i, ], start = tspx[1], frequency = tspx[3])
        fcarg$xreg <- ts(object$xreg[(i + 1):(i + h), ], start = tspx[1] + i / tspx[3], frequency = tspx[3])
      }
    }
    fcarg$object <- try(suppressWarnings(do.call(FUN, refitarg)), silent = TRUE)
    if (!is.element("try-error", class(fcarg$object))) {
      # Keep original variance estimate (for consistent bias adjustment)
      if(!is.null(object$sigma2))
        fcarg$object$sigma2 <- object$sigma2
      fits[i + h] <- suppressWarnings(do.call("forecast", fcarg)$mean[h])
    }
  }
  return(fits)
}

# The following function is for when users don't realise they already have the forecasts.
# e.g., with the dshw(), meanf() or rwf() functions.

#' @export
forecast.forecast <- function(object, ...) {
  input_names <- as.list(substitute(list(...)))
  # Read level argument
  if (is.element("level", names(input_names))) {
    level <- list(...)[["level"]]
    if (!identical(level, object$level)) {
      stop("Please set the level argument when the forecasts are first computed")
    }
  }
  # Read h argument
  if (is.element("h", names(input_names))) {
    h <- list(...)[["h"]]
    if (h > length(object$mean)) {
      stop("Please select a longer horizon when the forecasts are first computed")
    }
    tspf <- tsp(object$mean)
    object$mean <- ts(object$mean[1:h], start = tspf[1], frequency = tspf[3])
    if (!is.null(object$upper)) {
      object$upper <- ts(object$upper[1:h, , drop = FALSE], start = tspf[1], frequency = tspf[3])
      object$lower <- ts(object$lower[1:h, , drop = FALSE], start = tspf[1], frequency = tspf[3])
    }
  }
  return(object)
}

#' @export
subset.forecast <- function(x, ...) {
  tspx <- tsp(x$mean)
  x$mean <- subset(x$mean, ...)
  x$lower <- subset(ts(x$lower, start = tspx[1], frequency = tspx[3]), ...)
  x$upper <- subset(ts(x$upper, start = tspx[1], frequency = tspx[3]), ...)
  return(x)
}


#' Is an object a particular forecast type?
#'
#' Returns true if the forecast object is of a particular type
#'
#' @param x object to be tested
#' @export
is.forecast <- function(x) {
  inherits(x, "forecast")
}

#' @export
as.ts.forecast <- function(x, ...) {
  df <- ts(as.matrix(as.data.frame.forecast(x)))
  tsp(df) <- tsp(x$mean)
  return(df)
}

#' @export
as.data.frame.mforecast <- function(x, ...) {
  tmp <- lapply(x$forecast, as.data.frame)
  series <- names(tmp)
  times <- rownames(tmp[[1]])
  h <- NROW(tmp[[1]])
  output <- cbind(Time = times, Series = rep(series[1], h), tmp[[1]])
  if (length(tmp) > 1) {
    for (i in 2:length(tmp))
      output <- rbind(
        output,
        cbind(Time = times, Series = rep(series[i], h), tmp[[i]])
      )
  }
  rownames(output) <- NULL
  return(output)
}

#' @export
as.data.frame.forecast <- function(x, ...) {
  nconf <- length(x$level)
  out <- matrix(x$mean, ncol = 1)
  ists <- is.ts(x$mean)
  fr.x <- frequency(x$mean)
  if (ists) {
    out <- ts(out)
    attributes(out)$tsp <- attributes(x$mean)$tsp
  }
  names <- c("Point Forecast")
  if (!is.null(x$lower) && !is.null(x$upper) && !is.null(x$level)) {
    x$upper <- as.matrix(x$upper)
    x$lower <- as.matrix(x$lower)
    for (i in 1:nconf)
    {
      out <- cbind(out, x$lower[, i, drop = FALSE], x$upper[, i, drop = FALSE])
      names <- c(names, paste("Lo", x$level[i]), paste("Hi", x$level[i]))
    }
  }
  colnames(out) <- names
  tx <- time(x$mean)
  if (max(abs(tx - round(tx))) < 1e-11) {
    nd <- 0L
  } else {
    nd <- max(round(log10(fr.x) + 1), 2L)
  }
  if(nd == 0L)
    rownames(out) <- round(tx)
  else
    rownames(out) <- format(tx, nsmall = nd, digits = nd)
  # Rest of function borrowed from print.ts(), but with header() omitted
  if (!ists) {
    return(as.data.frame(out))
  }

  x <- as.ts(out)
  calendar <- any(fr.x == c(4, 12)) && length(start(x)) == 2L
  Tsp <- tsp(x)
  if (is.null(Tsp)) {
    warning("series is corrupt, with no 'tsp' attribute")
    print(unclass(x))
    return(invisible(x))
  }
  nn <- 1 + round((Tsp[2L] - Tsp[1L]) * Tsp[3L])
  if (NROW(x) != nn) {
    warning(gettextf("series is corrupt: length %d with 'tsp' implying %d", NROW(x), nn), domain = NA, call. = FALSE)
    calendar <- FALSE
  }
  if (NCOL(x) == 1) {
    if (calendar) {
      if (fr.x > 1) {
        dn2 <- if (fr.x == 12) {
          month.abb
        } else if (fr.x == 4) {
          c("Qtr1", "Qtr2", "Qtr3", "Qtr4")
        } else {
          paste("p", 1L:fr.x, sep = "")
        }
        if (NROW(x) <= fr.x && start(x)[1L] == end(x)[1L]) {
          dn1 <- start(x)[1L]
          dn2 <- dn2[1 + (start(x)[2L] - 2 + seq_along(x)) %% fr.x]
          x <- matrix(
            format(x, ...), nrow = 1L, byrow = TRUE,
            dimnames = list(dn1, dn2)
          )
        }
        else {
          start.pad <- start(x)[2L] - 1
          end.pad <- fr.x - end(x)[2L]
          dn1 <- start(x)[1L]:end(x)[1L]
          x <- matrix(
            c(rep.int("", start.pad), format(x, ...), rep.int("", end.pad)), ncol = fr.x,
            byrow = TRUE, dimnames = list(dn1, dn2)
          )
        }
      }
      else {
        attributes(x) <- NULL
        names(x) <- tx
      }
    }
    else {
      attr(x, "class") <- attr(x, "tsp") <- attr(x, "na.action") <- NULL
    }
  }
  else {
    if (calendar && fr.x > 1) {
      tm <- time(x)
      t2 <- cycle(x)
      p1 <- format(floor(tm + 1e-8))
      rownames(x) <-
        if (fr.x == 12) {
          paste(month.abb[t2], p1, sep = " ")
        } else {
          paste(
            p1,
            if (fr.x == 4) {
              c("Q1", "Q2", "Q3", "Q4")[t2]
            } else {
              format(t2)
            },
            sep = " "
          )
        }
    }
    else {
      rownames(x) <- format(time(x), nsmall = nd)
    }
    attr(x, "class") <- attr(x, "tsp") <- attr(x, "na.action") <- NULL
  }
  return(as.data.frame(x))
}

Try the forecast package in your browser

Any scripts or data that you put into this service are public.

forecast documentation built on June 22, 2024, 9:20 a.m.