Nothing
# Defaults:
# For non-seasonal data, p chosen using AIC from linear AR(p) model
# For seasonal data, p chosen using AIC from linear AR(p) model after
# seasonally adjusting with STL decomposition, and P=1
#' Time Series Forecasts with a user-defined model
#'
#' Experimental function to forecast univariate time series with a
#' user-defined model
#'
#' This is an experimental function and only recommended for advanced users.
#' The selected model is fitted with lagged values of \code{y} as
#' inputs. The inputs are for
#' lags 1 to \code{p}, and lags \code{m} to \code{mP} where
#' \code{m=frequency(y)}. If \code{xreg} is provided, its columns are also
#' used as inputs. If there are missing values in \code{y} or
#' \code{xreg}, the corresponding rows (and any others which depend on them as
#' lags) are omitted from the fit. The model is trained for one-step
#' forecasting. Multi-step forecasts are computed recursively.
#'
#' @aliases print.modelAR
#'
#' @param y A numeric vector or time series of class \code{ts}.
#' @param p Embedding dimension for non-seasonal time series. Number of
#' non-seasonal lags used as inputs. For non-seasonal time series, the default
#' is the optimal number of lags (according to the AIC) for a linear AR(p)
#' model. For seasonal time series, the same method is used but applied to
#' seasonally adjusted data (from an stl decomposition).
#' @param P Number of seasonal lags used as inputs.
#' @param FUN Function used for model fitting. Must accept argument \code{x}
#' and \code{y} for the predictors and response, respectively (\code{formula}
#' object not currently supported).
#' @param predict.FUN Prediction function used to apply \code{FUN} to new data.
#' Must accept an object of class \code{FUN} as its first argument, and a
#' data frame or matrix of new data for its second argument. Additionally,
#' it should return fitted values when new data is omitted.
#' @param xreg Optionally, a vector or matrix of external regressors, which
#' must have the same number of rows as \code{y}. Must be numeric.
#' @param model Output from a previous call to \code{nnetar}. If model is
#' passed, this same model is fitted to \code{y} without re-estimating any
#' parameters.
#' @param subset Optional vector specifying a subset of observations to be used
#' in the fit. Can be an integer index vector or a logical vector the same
#' length as \code{y}. All observations are used by default.
#' @param scale.inputs If TRUE, inputs are scaled by subtracting the column
#' means and dividing by their respective standard deviations. If \code{lambda}
#' is not \code{NULL}, scaling is applied after Box-Cox transformation.
#' @param x Deprecated. Included for backwards compatibility.
#' @param \dots Other arguments passed to \code{FUN} for
#' \code{modelAR}.
#' @inheritParams forecast.ts
#'
#' @return Returns an object of class "\code{modelAR}".
#'
#' The function \code{summary} is used to obtain and print a summary of the
#' results.
#'
#' The generic accessor functions \code{fitted.values} and \code{residuals}
#' extract useful features of the value returned by \code{nnetar}.
#'
#' \item{model}{A list containing information about the fitted model}
#' \item{method}{The name of the forecasting method as a character string}
#' \item{x}{The original time series.}
#' \item{xreg}{The external regressors used in fitting (if given).}
#' \item{residuals}{Residuals from the fitted model. That is x minus fitted values.}
#' \item{fitted}{Fitted values (one-step forecasts)}
#' \item{...}{Other arguments}
#'
#' @author Rob J Hyndman and Gabriel Caceres
#' @keywords ts
#'
#' @export
modelAR <- function(y, p, P=1, FUN, predict.FUN, xreg=NULL, lambda=NULL, model=NULL, subset=NULL, scale.inputs=FALSE, x=y, ...) {
useoldmodel <- FALSE
yname <- deparse(substitute(y))
if (!is.null(model)) {
# Use previously fitted model
useoldmodel <- TRUE
# Check for conflicts between new and old data:
# Check model class
if (!is.modelAR(model)) {
stop("Model must be a modelAR object")
}
# Check new data
m <- max(round(frequency(model$x)), 1L)
minlength <- max(c(model$p, model$P * m)) + 1
if (length(x) < minlength) {
stop(paste("Series must be at least of length", minlength, "to use fitted model"))
}
if (tsp(as.ts(x))[3] != m) {
warning(paste("Data frequency doesn't match fitted model, coercing to frequency =", m))
x <- ts(x, frequency = m)
}
# Check xreg
if (!is.null(model$xreg)) {
if (is.null(xreg)) {
stop("No external regressors provided")
}
if (NCOL(xreg) != NCOL(model$xreg)) {
stop("Number of external regressors does not match fitted model")
}
}
# Update parameters with previous model
lambda <- model$lambda
p <- model$p
P <- model$P
FUN <- model$FUN
predict.FUN <- model$predict.FUN
if (P > 0) {
lags <- sort(unique(c(1:p, m * (1:P))))
} else {
lags <- 1:p
}
if (!is.null(model$scalex)) {
scale.inputs <- TRUE
}
} else { # when not using an old model
if (length(y) < 3) {
stop("Not enough data to fit a model")
}
# Check for constant data in time series
constant_data <- is.constant(na.interp(x))
if (constant_data){
warning("Constant data, setting p=1, P=0, lambda=NULL, scale.inputs=FALSE")
scale.inputs <- FALSE
lambda <- NULL
p <- 1
P <- 0
}
## Check for constant data in xreg
if (!is.null(xreg)){
constant_xreg <- any(apply(as.matrix(xreg), 2, function(x) is.constant(na.interp(x))))
if (constant_xreg){
warning("Constant xreg column, setting scale.inputs=FALSE")
scale.inputs <- FALSE
}
}
}
# Check for NAs in x
if (any(is.na(x))) {
warning("Missing values in x, omitting rows")
}
# Transform data
if (!is.null(lambda)) {
xx <- BoxCox(x, lambda)
lambda <- attr(xx, "lambda")
} else {
xx <- x
}
## Check whether to use a subset of the data
xsub <- rep(TRUE, length(x))
if (is.numeric(subset)) {
xsub[-subset] <- FALSE
}
if (is.logical(subset)) {
xsub <- subset
}
# Scale series
scalex <- NULL
if (scale.inputs) {
if (useoldmodel) {
scalex <- model$scalex
}
else {
tmpx <- scale(xx[xsub], center = TRUE, scale = TRUE)
scalex <- list(
center = attr(tmpx, "scaled:center"),
scale = attr(tmpx, "scaled:scale")
)
}
xx <- scale(xx, center = scalex$center, scale = scalex$scale)
xx <- xx[, 1]
}
# Check xreg class & dim
xxreg <- NULL
scalexreg <- NULL
if (!is.null(xreg)) {
xxreg <- xreg <- as.matrix(xreg)
if (length(x) != NROW(xreg)) {
stop("Number of rows in xreg does not match series length")
}
# Check for NAs in xreg
if (any(is.na(xreg))) {
warning("Missing values in xreg, omitting rows")
}
# Scale xreg
if (scale.inputs) {
if (useoldmodel) {
scalexreg <- model$scalexreg
}
else {
tmpx <- scale(xxreg[xsub, ], center = TRUE, scale = TRUE)
scalexreg <- list(
center = attr(tmpx, "scaled:center"),
scale = attr(tmpx, "scaled:scale")
)
}
xxreg <- scale(xxreg, center = scalexreg$center, scale = scalexreg$scale)
}
}
# Set up lagged matrix
n <- length(xx)
xx <- as.ts(xx)
m <- max(round(frequency(xx)), 1L)
if (!useoldmodel) {
if (m == 1) {
if (missing(p)) {
p <- max(length(ar(na.interp(xx))$ar), 1)
}
if (p >= n) {
warning("Reducing number of lagged inputs due to short series")
p <- n - 1
}
lags <- 1:p
if (P > 1) {
warning("Non-seasonal data, ignoring seasonal lags")
}
P <- 0
} else {
if (missing(p)) {
if (n >= 2 * m) {
x.sa <- seasadj(mstl(na.interp(xx)))
} else {
x.sa <- na.interp(xx)
}
p <- max(length(ar(x.sa)$ar), 1)
}
if (p >= n) {
warning("Reducing number of lagged inputs due to short series")
p <- n - 1
}
if (P > 0 && n >= m * P + 2) {
lags <- sort(unique(c(1:p, m * (1:P))))
} else {
lags <- 1:p
if (P > 0) {
warning("Series too short for seasonal lags")
P <- 0
}
}
}
}
maxlag <- max(lags)
nlag <- length(lags)
y <- xx[-(1:maxlag)]
lags.X <- matrix(NA_real_, ncol = nlag, nrow = n - maxlag)
for (i in 1:nlag){
lags.X[, i] <- xx[(maxlag - lags[i] + 1):(n - lags[i])]
}
# Add xreg into lagged matrix
lags.X <- cbind(lags.X, xxreg[-(1:maxlag), ])
# Remove missing values if present
j <- complete.cases(lags.X, y)
## Remove values not in subset
j <- j & xsub[-(1:maxlag)]
## Stop if there's no data to fit (e.g. due to NAs or NaNs)
if (NROW(lags.X[j,, drop=FALSE]) == 0) {
stop("No data to fit (possibly due to NA or NaN)")
}
## Fit selected model
if (useoldmodel) {
fit <- model$model
} else {
fit <- FUN(x = lags.X[j,, drop=FALSE], y = y[j], ...)
}
# Return results
out <- list()
out$x <- as.ts(x)
out$m <- m
out$p <- p
out$P <- P
out$FUN <- FUN
out$predict.FUN <- predict.FUN
out$scalex <- scalex
out$scalexreg <- scalexreg
out$xreg <- xreg
out$lambda <- lambda
out$subset <- (1:length(x))[xsub]
out$model <- fit
out$modelargs <- list(...)
if (useoldmodel) {
out$modelargs <- model$modelargs
fits <- c(rep(NA_real_, maxlag), predict.FUN(fit, lags.X[j,, drop=FALSE]))
} else {
fits <- c(rep(NA_real_, maxlag), predict.FUN(fit))
}
if (scale.inputs) {
fits <- fits * scalex$scale + scalex$center
}
fits <- ts(fits)
if (!is.null(lambda)) {
fits <- InvBoxCox(fits, lambda)
}
out$fitted <- ts(rep(NA_real_, length(out$x)))
out$fitted[c(rep(TRUE, maxlag), j)] <- fits
tsp(out$fitted) <- tsp(out$x)
out$residuals <- out$x - out$fitted
out$lags <- lags
out$series <- yname
out$method <- deparse(substitute(FUN))
out$method <- paste0(out$method, "-AR(", p)
if (P > 0) out$method <- paste(out$method, ",", P, sep = "")
out$method <- paste0(out$method, ")")
if (P > 0) out$method <- paste(out$method, "[", m, "]", sep = "")
out$call <- match.call()
return(structure(out, class = c("modelAR")))
}
#' Forecasting using user-defined model
#'
#' Returns forecasts and other information for user-defined
#' models.
#'
#' Prediction intervals are calculated through simulations and can be slow.
#' Note that if the model is too complex and overfits the data, the residuals
#' can be arbitrarily small; if used for prediction interval calculations, they
#' could lead to misleadingly small values.
#'
#' @param object An object of class "\code{modelAR}" resulting from a call to
#' \code{\link{modelAR}}.
#' @param h Number of periods for forecasting. If \code{xreg} is used, \code{h}
#' is ignored and the number of forecast periods is set to the number of rows
#' of \code{xreg}.
#' @param PI If TRUE, prediction intervals are produced, otherwise only point
#' forecasts are calculated. If \code{PI} is FALSE, then \code{level},
#' \code{fan}, \code{bootstrap} and \code{npaths} are all ignored.
#' @param level Confidence level for prediction intervals.
#' @param fan If \code{TRUE}, level is set to \code{seq(51,99,by=3)}. This is
#' suitable for fan plots.
#' @param xreg Future values of external regressor variables.
#' @param bootstrap If \code{TRUE}, then prediction intervals computed using
#' simulations with resampled residuals rather than normally distributed
#' errors. Ignored if \code{innov} is not \code{NULL}.
#' @param npaths Number of sample paths used in computing simulated prediction
#' intervals.
#' @param innov Values to use as innovations for prediction intervals. Must be
#' a matrix with \code{h} rows and \code{npaths} columns (vectors are coerced
#' into a matrix). If present, \code{bootstrap} is ignored.
#' @param ... Additional arguments passed to \code{\link{simulate.nnetar}}
#' @inheritParams forecast.ts
#'
#' @return An object of class "\code{forecast}".
#'
#' The function \code{summary} is used to obtain and print a summary of the
#' results, while the function \code{plot} produces a plot of the forecasts and
#' prediction intervals.
#'
#' The generic accessor functions \code{fitted.values} and \code{residuals}
#' extract useful features of the value returned by \code{forecast.nnetar}.
#'
#' An object of class "\code{forecast}" is a list containing at least the
#' following elements:
#' \item{model}{A list containing information about the fitted model}
#' \item{method}{The name of the forecasting method as a character string}
#' \item{mean}{Point forecasts as a time series}
#' \item{lower}{Lower limits for prediction intervals}
#' \item{upper}{Upper limits for prediction intervals}
#' \item{level}{The confidence values associated with the prediction intervals}
#' \item{x}{The original time series (either \code{object} itself or the time series
#' used to create the model stored as \code{object}).}
#' \item{xreg}{The external regressors used in fitting (if given).}
#' \item{residuals}{Residuals from the fitted model. That is x minus fitted values.}
#' \item{fitted}{Fitted values (one-step forecasts)}
#' \item{...}{Other arguments}
#'
#' @author Rob J Hyndman and Gabriel Caceres
#' @seealso \code{\link{nnetar}}.
#' @keywords ts
#'
#' @export
forecast.modelAR <- function(object, h=ifelse(object$m > 1, 2 * object$m, 10), PI=FALSE, level=c(80, 95), fan=FALSE, xreg=NULL, lambda=object$lambda, bootstrap=FALSE, npaths=1000, innov=NULL, ...) {
out <- object
tspx <- tsp(out$x)
#
if (fan) {
level <- seq(51, 99, by = 3)
} else {
if (min(level) > 0 && max(level) < 1) {
level <- 100 * level
} else if (min(level) < 0 || max(level) > 99.99) {
stop("Confidence limit out of range")
}
}
# Check if xreg was used in fitted model
if (is.null(object$xreg)) {
if (!is.null(xreg)) {
warning("External regressors were not used in fitted model, xreg will be ignored")
}
xreg <- NULL
}
else {
if (is.null(xreg)) {
stop("No external regressors provided")
}
xreg <- as.matrix(xreg)
if (NCOL(xreg) != NCOL(object$xreg)) {
stop("Number of external regressors does not match fitted model")
}
h <- NROW(xreg)
}
fcast <- numeric(h)
xx <- object$x
xxreg <- xreg
if (!is.null(lambda)) {
xx <- BoxCox(xx, lambda)
lambda <- attr(xx, "lambda")
}
# Check and apply scaling of fitted model
if (!is.null(object$scalex)) {
xx <- scale(xx, center = object$scalex$center, scale = object$scalex$scale)
if (!is.null(xreg)) {
xxreg <- scale(xreg, center = object$scalexreg$center, scale = object$scalexreg$scale)
}
}
# Get lags used in fitted model
lags <- object$lags
maxlag <- max(lags)
flag <- rev(tail(xx, n = maxlag))
# Iterative 1-step forecast
for (i in 1:h)
{
newdata <- c(flag[lags], xxreg[i, ])
if (any(is.na(newdata))) {
stop("I can't forecast when there are missing values near the end of the series.")
}
fcast[i] <- object$predict.FUN(object$model, newdata)
flag <- c(fcast[i], flag[-maxlag])
}
# Re-scale point forecasts
if (!is.null(object$scalex)) {
fcast <- fcast * object$scalex$scale + object$scalex$center
}
# Add ts properties
fcast <- ts(fcast, start = tspx[2] + 1 / tspx[3], frequency = tspx[3])
# Back-transform point forecasts
if (!is.null(lambda)) {
fcast <- InvBoxCox(fcast, lambda)
}
# Compute prediction intervals using simulations
if (isTRUE(PI)) {
nint <- length(level)
sim <- matrix(NA, nrow = npaths, ncol = h)
if (!is.null(innov)) {
if (length(innov) != h * npaths) {
stop("Incorrect number of innovations, need h*npaths values")
}
innov <- matrix(innov, nrow = h, ncol = npaths)
bootstrap <- FALSE
}
for (i in 1:npaths)
sim[i, ] <- simulate(object, nsim = h, bootstrap = bootstrap, xreg = xreg, lambda = lambda, innov = innov[, i], ...)
lower <- apply(sim, 2, quantile, 0.5 - level / 200, type = 8)
upper <- apply(sim, 2, quantile, 0.5 + level / 200, type = 8)
if (nint > 1L) {
lower <- ts(t(lower))
upper <- ts(t(upper))
}
else {
lower <- ts(matrix(lower, ncol = 1L))
upper <- ts(matrix(upper, ncol = 1L))
}
tsp(lower) <- tsp(upper) <- tsp(fcast)
}
else {
level <- NULL
lower <- NULL
upper <- NULL
}
out$mean <- fcast
out$level <- level
out$lower <- lower
out$upper <- upper
return(structure(out, class = "forecast"))
}
#' @rdname fitted.Arima
#' @export
fitted.modelAR <- function(object, h=1, ...) {
if (h == 1) {
return(object$fitted)
}
else {
return(hfitted(object = object, h = h, FUN = "modelAR", ...))
}
}
#' @export
print.modelAR <- function(x, digits = max(3, getOption("digits") - 3), ...) {
cat("Series:", x$series, "\n")
cat("Model: ", x$method, "\n")
cat("Call: ")
print(x$call)
print(x$model)
cat(
"\nsigma^2 estimated as ", format(mean(residuals(x) ^ 2, na.rm = TRUE), digits = digits),
"\n", sep = ""
)
invisible(x)
}
#' @rdname is.ets
#' @export
is.modelAR <- function(x) {
inherits(x, "modelAR")
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.