R/theta.R

Defines functions thetaf

Documented in thetaf

# Implement standard Theta method of Assimakopoulos and Nikolopoulos (2000)
# More general methods are available in the forecTheta package

# Author: RJH

#' Theta method forecast
#'
#' Returns forecasts and prediction intervals for a theta method forecast.
#'
#' The theta method of Assimakopoulos and Nikolopoulos (2000) is equivalent to
#' simple exponential smoothing with drift. This is demonstrated in Hyndman and
#' Billah (2003).
#'
#' The series is tested for seasonality using the test outlined in A&N. If
#' deemed seasonal, the series is seasonally adjusted using a classical
#' multiplicative decomposition before applying the theta method. The resulting
#' forecasts are then reseasonalized.
#'
#' Prediction intervals are computed using the underlying state space model.
#'
#' More general theta methods are available in the
#' \code{\link[forecTheta]{forecTheta}} package.
#'
#' @param y a numeric vector or time series of class \code{ts}
#' @param h Number of periods for forecasting
#' @param level Confidence levels for prediction intervals.
#' @param fan If TRUE, level is set to seq(51,99,by=3). This is suitable for
#' fan plots.
#' @param x Deprecated. Included for backwards compatibility.
#' @return An object of class "\code{forecast}".
#'
#' The function \code{summary} is used to obtain and print a summary of the
#' results, while the function \code{plot} produces a plot of the forecasts and
#' prediction intervals.
#'
#' The generic accessor functions \code{fitted.values} and \code{residuals}
#' extract useful features of the value returned by \code{rwf}.
#'
#' An object of class \code{"forecast"} is a list containing at least the
#' following elements: \item{model}{A list containing information about the
#' fitted model} \item{method}{The name of the forecasting method as a
#' character string} \item{mean}{Point forecasts as a time series}
#' \item{lower}{Lower limits for prediction intervals} \item{upper}{Upper
#' limits for prediction intervals} \item{level}{The confidence values
#' associated with the prediction intervals} \item{x}{The original time series
#' (either \code{object} itself or the time series used to create the model
#' stored as \code{object}).} \item{residuals}{Residuals from the fitted model.
#' That is x minus fitted values.} \item{fitted}{Fitted values (one-step
#' forecasts)}
#' @author Rob J Hyndman
#' @seealso \code{\link[stats]{arima}}, \code{\link{meanf}}, \code{\link{rwf}},
#' \code{\link{ses}}
#' @references Assimakopoulos, V. and Nikolopoulos, K. (2000). The theta model:
#' a decomposition approach to forecasting. \emph{International Journal of
#' Forecasting} \bold{16}, 521-530.
#'
#' Hyndman, R.J., and Billah, B. (2003) Unmasking the Theta method.
#' \emph{International J. Forecasting}, \bold{19}, 287-290.
#' @keywords ts
#' @examples
#' nile.fcast <- thetaf(Nile)
#' plot(nile.fcast)
#' @export
thetaf <- function(y, h = ifelse(frequency(y) > 1, 2 * frequency(y), 10),
                   level = c(80, 95), fan = FALSE, x = y) {
  # Check inputs
  if (fan) {
    level <- seq(51, 99, by = 3)
  } else {
    if (min(level) > 0 && max(level) < 1) {
      level <- 100 * level
    } else if (min(level) < 0 || max(level) > 99.99) {
      stop("Confidence limit out of range")
    }
  }

  # Check seasonality
  n <- length(x)
  x <- as.ts(x)
  m <- frequency(x)
  if (m > 1 && !is.constant(x) && n > 2 * m) {
    r <- as.numeric(acf(x, lag.max = m, plot = FALSE)$acf)[-1]
    stat <- sqrt((1 + 2 * sum(r[-m]^2)) / n)
    seasonal <- (abs(r[m]) / stat > qnorm(0.95))
  }
  else {
    seasonal <- FALSE
  }

  # Seasonal decomposition
  origx <- x
  if (seasonal) {
    decomp <- decompose(x, type = "multiplicative")
    if (any(abs(seasonal(decomp)) < 1e-4)) {
      warning("Seasonal indexes close to zero. Using non-seasonal Theta method")
    } else {
      x <- seasadj(decomp)
    }
  }

  # Find theta lines
  fcast <- ses(x, h = h)
  tmp2 <- lsfit(0:(n - 1), x)$coefficients[2] / 2
  alpha <- pmax(1e-10, fcast$model$par["alpha"])
  fcast$mean <- fcast$mean + tmp2 * (0:(h - 1) + (1 - (1 - alpha)^n) / alpha)

  # Reseasonalize
  if (seasonal) {
    fcast$mean <- fcast$mean * rep(tail(decomp$seasonal, m), trunc(1 + h / m))[1:h]
    fcast$fitted <- fcast$fitted * decomp$seasonal
  }
  fcast$residuals <- origx - fcast$fitted

  # Find prediction intervals
  fcast.se <- sqrt(fcast$model$sigma2) * sqrt((0:(h - 1)) * alpha^2 + 1)
  nconf <- length(level)
  fcast$lower <- fcast$upper <- ts(matrix(NA, nrow = h, ncol = nconf))
  tsp(fcast$lower) <- tsp(fcast$upper) <- tsp(fcast$mean)
  for (i in 1:nconf)
  {
    zt <- -qnorm(0.5 - level[i] / 200)
    fcast$lower[, i] <- fcast$mean - zt * fcast.se
    fcast$upper[, i] <- fcast$mean + zt * fcast.se
  }

  # Return results
  fcast$x <- origx
  fcast$level <- level
  fcast$method <- "Theta"
  fcast$model <- list(alpha = alpha, drift = tmp2, sigma = fcast$model$sigma2)
  fcast$model$call <- match.call()
  return(fcast)
}

Try the forecast package in your browser

Any scripts or data that you put into this service are public.

forecast documentation built on June 22, 2024, 9:20 a.m.