Nothing
library(frbs)
## Input data
data(iris)
set.seed(2)
irisShuffled <- iris[sample(nrow(iris)),]
irisShuffled[,5] <- unclass(irisShuffled[,5])
tra.iris <- irisShuffled[1:105,]
tst.iris <- irisShuffled[106:nrow(irisShuffled),1:4]
real.iris <- matrix(irisShuffled[106:nrow(irisShuffled),5], ncol = 1)
range.data.input <- matrix(c(4.3, 7.9, 2.0, 4.4, 1.0, 6.9, 0.1, 2.5), nrow=2)
## Set the method and its parameters
method.type <- "FRBCS.CHI"
control <- list(num.labels = 6, type.mf = "GAUSSIAN", type.tnorm = "MIN", type.snorm = "MAX", type.implication.func = "ZADEH")
## Generate fuzzy model
object <- frbs.learn(tra.iris, range.data.input, method.type, control)
## Predicting step
res.test <- predict(object, tst.iris)
## error calculation
err = 100*sum(real.iris!=res.test)/nrow(real.iris)
print("The result: ")
print(res.test)
print("FRBCS.CHI: percentage Error on Iris")
print(err)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.