Nothing
library(frbs)
## Input data
data(iris)
set.seed(2)
irisShuffled <- iris[sample(nrow(iris)),]
irisShuffled[,5] <- unclass(irisShuffled[,5])
tra.iris <- irisShuffled[1:105,]
tst.iris <- irisShuffled[106:nrow(irisShuffled),1:4]
real.iris <- matrix(irisShuffled[106:nrow(irisShuffled),5], ncol = 1)
range.data <- matrix(c(4.3, 7.9, 2.0, 4.4, 1.0, 6.9, 0.1, 2.5), nrow=2)
## Set the method and its parameters
method.type <- "SLAVE"
control <- list(num.class = 3, num.labels = 3, persen_cross = 0.9, max.iter = 50, max.gen = 50,
persen_mutant = 0.3, k.lower = 0, k.upper = 1, epsilon = 0.8, name="sim-0")
## Generate fuzzy model
object <- frbs.learn(tra.iris, range.data, method.type, control)
## Predicting step
res.test <- predict(object, tst.iris)
## error calculation
err = 100*sum(real.iris!=res.test)/nrow(real.iris)
print("The result: ")
print(res.test)
print("SLAVE: percentage Error on Iris: ")
print(err)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.