R/DenANOVA.R

Defines functions DenANOVA

Documented in DenANOVA

#' @title Fréchet ANOVA for Densities
#' @description Fréchet analysis of variance for densities with respect to 
#'   \eqn{L^2}-Wasserstein distance.
#' @param yin A matrix or data frame or list holding the sample of measurements 
#'   for the observed distributions. If \code{yin} is a matrix or data frame, 
#'   each row holds the measurements for one distribution.
#' @param hin A list holding the histograms for the observed distributions.
#' @param din A matrix or data frame or list holding the density functions. 
#'   If \code{din} is a matrix or data frame, each row of \code{din} holds 
#'   the density function for one distribution.
#' @param qin A matrix or data frame or list holding the quantile functions. 
#'   If \code{qin} is a matrix or data frame, each row of \code{qin} holds 
#'   the quantile function for one distribution.
#' Note that the input can be only one of the four \code{yin}, \code{hin}, 
#' \code{din}, and \code{qin}. If more than one of them are specified, 
#' \code{yin} overwrites \code{hin}, \code{hin} overwrites \code{din}, 
#' and \code{din} overwrites \code{qin}.
#' @param supin A matrix or data frame or list holding the support grids of 
#'   the density functions in \code{din} or the quantile functions in \code{qin}. 
#'   If \code{supin} is a matrix or data frame, each row of \code{supin} holds 
#'   the support grid of the corresponding density function or quantile function.
#'   Ignored if the input is \code{yin} or \code{hin}.
#'   It can also be a vector if all density functions in \code{din} or 
#'   all quantile functions in \code{qin} have the same support grid.
#' @param group A vector containing the group memberships of the corresponding 
#'   observed distributions in \code{yin} or \code{hin} or \code{din} or \code{qin}.
#' @param optns A list of control parameters specified by
#'   \code{list(name = value)}. See `Details`.
#' @details Available control options are 
#' \describe{
#' \item{boot}{Logical, also compute bootstrap \eqn{p}-value if \code{TRUE}. 
#'   Default is \code{FALSE}.}
#' \item{R}{The number of bootstrap replicates. Only used when \code{boot} 
#'   is \code{TRUE}. Default is 1000.}
#' \item{nqSup}{A scalar giving the number of the support points for 
#'   quantile functions based on which the \eqn{L^2} Wasserstein distance 
#'   (i.e., the \eqn{L^2} distance between the quantile functions) is computed. 
#'   Default is 201.}
#' \item{qSup}{A numeric vector holding the support grid on [0, 1] based on 
#'   which the \eqn{L^2} Wasserstein distance (i.e., the \eqn{L^2} distance 
#'   between the quantile functions) is computed. It overrides \code{nqSup}.}
#' \item{bwDen}{The bandwidth value used in \code{CreateDensity()} for
#'   density estimation; positive numeric - default: determine automatically 
#'   based on the data-driven bandwidth selector proposed by 
#'   Sheather and Jones (1991).}
#' \item{ndSup}{A scalar giving the number of support points the kernel density 
#'   estimation used in \code{CreateDensity()}; numeric - default: 101.}
#' \item{dSup}{User defined output grid for the support of 
#'   kernel density estimation used in \code{CreateDensity()}, 
#'   it overrides \code{ndSup}.}
#' \item{delta}{A scalar giving the size of the bin to be used used in 
#'   \code{CreateDensity()}; numeric - default: \code{diff(range(y))/1000}. 
#'   It only works when the raw sample is available.}
#' \item{kernelDen}{A character holding the type of kernel functions used in 
#'   \code{CreateDensity()} for density estimation; \code{"rect"}, 
#'   \code{"gauss"}, \code{"epan"}, \code{"gausvar"}, 
#'   \code{"quar"} - default: \code{"gauss"}.}
#' \item{infSupport}{logical if we expect the distribution to have 
#'   infinite support or not, used in \code{CreateDensity()} for 
#'   density estimation; logical - default: \code{FALSE}}
#' \item{denLowerThreshold}{\code{FALSE} or a positive value giving 
#'   the lower threshold of the densities used in \code{CreateDensity()}; 
#'   default: \code{0.001 * mean(qin[,ncol(qin)] - qin[,1])}.}
#' }
#' @return A \code{DenANOVA} object --- a list containing the following fields:
#' \item{pvalAsy}{a scalar holding the asymptotic \eqn{p}-value.}
#' \item{pvalBoot}{a scalar holding the bootstrap \eqn{p}-value.
#'   Returned if \code{optns$boot} is TRUE.}
#' \item{optns}{the control options used.}
#' @examples
#' \donttest{
#' set.seed(1)
#' n1 <- 100
#' n2 <- 100
#' delta <- 1
#' qSup <- seq(0.01, 0.99, (0.99 - 0.01) / 50)
#' mu1 <- rnorm(n1, mean = 0, sd = 0.5)
#' mu2 <- rnorm(n2, mean = delta, sd = 0.5)
#' Y1 <- lapply(1:n1, function(i) {
#'   qnorm(qSup, mu1[i], sd = 1)
#' })
#' Y2 <- lapply(1:n2, function(i) {
#'   qnorm(qSup, mu2[i], sd = 1)
#' })
#' Ly <- c(Y1, Y2)
#' Lx <- qSup
#' group <- c(rep(1, n1), rep(2, n2))
#' res <- DenANOVA(qin = Ly, supin = Lx, group = group, optns = list(boot = TRUE))
#' res$pvalAsy # returns asymptotic pvalue
#' res$pvalBoot # returns bootstrap pvalue
#' }
#' @references
#' \itemize{
#' \item \cite{Dubey, P. and Müller, H.G., 2019. Fréchet analysis of variance for random objects. Biometrika, 106(4), pp.803-821.}
#' }
#' @importFrom fdadensity dens2quantile
#' @importFrom boot boot
#' @importFrom stats pchisq
#' @export

DenANOVA <- function(yin = NULL, hin = NULL, din = NULL, qin = NULL, 
                     supin = NULL, group = NULL, optns = list()) {
  if (is.null(yin) & is.null(qin) & is.null(hin) & is.null(din)) {
    stop ("one of the four arguments, yin, hin, din, and qin, should be inputted by users")
  }
  if (is.null(group)) {
    stop("requires the input of group")
  }
  if (!is.null(yin)) {
    if (!(is.null(hin) & is.null(din) & is.null(qin))) {
      warning ("hin, din, and qin are redundant when yin is available")
    }
    tin <- 1 # type of input
    ls <- yin
  } else if (!is.null(hin)) {
    if (!(is.null(din) & is.null(qin))) {
      warning ("din and qin are redundant when hin is available")
    }
    tin <- 2 # type of input
    ls <- hin
  } else if (!is.null(din)) {
    if (!is.null(qin)) {
      warning ("qin is redundant when din is available")
    }
    tin <- 3 # type of input
    ls <- din
    if (!is.list(din)) {
      if (is.matrix(din) | is.data.frame(din)) {
        din <- lapply(1:nrow(din), function(i) din[i, ])
      } else {
        stop("din must be a matrix or data frame or list")
      }
    }
  } else {
    tin <- 4 # type of input
    ls <- qin
  }
  if (tin == 2) {
    if (!is.list(ls)) {
      stop("hin must be a list")
    }
    for (histogram in ls) {
      if (!is.list(histogram))
        stop("each element of hin must be a list")
      if (is.null(histogram$breaks) & is.null(histogram$mids))
        stop("each element of hin must be a list with at least one of the components breaks or mids")
      if (is.null(histogram$counts))
        stop("each element of hin must be a list with component counts")
    }
  } else {
    if (!is.list(ls)) {
      if (is.matrix(ls) | is.data.frame(ls)) {
        ls <- lapply(1:nrow(ls), function(i) ls[i, ])
      } else {
        if (tin == 1) {
          stop("yin must be a matrix or data frame or list")
        } else if (tin == 3) {
          stop("din must be a matrix or data frame or list")
        } else {
          stop("qin must be a matrix or data frame or list")
        }
      }
    }
  }
  n <- length(ls)
  if (length(group) != n) {
    stop("the number of elements in group must equal the number of observed distributions")
  }
  if (is.null(optns$boot)) {
    optns$boot <- FALSE
  }
  if (optns$boot) {
    if (is.null(optns$R)) {
      optns$R <- 1000
    }
  }
  if (tin > 2) {# if din or qin
    if (!is.null(supin)) {
      if (!is.list(supin)) {
        if (is.matrix(supin) | is.data.frame(supin)) {
          supin <- lapply(1:nrow(supin), function(i) supin[i, ])
        } else if (is.vector(supin)) {
          supin <- rep(list(supin), n)
        } else {
          stop("supin must be a vector or matrix or data frame or list")
        }
      }
      if (length(supin) != n) {
        if (tin == 3) {
          stop("the number of support grids in supin is not equal to the number of observed distributions in din")
        } else {
          stop("the number of support grids in supin is not equal to the number of observed distributions in qin")
        }
      }
      if (sum(sapply(supin, length) - sapply(ls, length))) {
        if (tin == 3) {
          stop("the number of support points must be equal to the number of observations for each density function in din")
        } else {
          stop("the number of support points must be equal to the number of observations for each quantile function in qin")
        }
      }
    } else {
      if (tin == 3) {
        stop("requires the input of supin for din")
      } else {
        stop("requires the input of supin for qin")
      }
    }
  }
  if (!is.null(optns$qSup)) {
    if (min(optns$qSup) != 0 | max(optns$qSup) - 1 != 0)
      stop ("optns$qSup must have minimum 0 and maximum 1")
    if (sum(duplicated(optns$qSup)) > 0) {
      optns$qSup <- unique(optns$qSup)
      warning ("optns$qSup has duplicated elements which has been removed")
    }
    if (is.unsorted(optns$qSup)) {
      optns$qSup <- sort(optns$qSup)
      warning ("optns$qSup has been reordered to be increasing")
    }
  } else {
    if (tin < 4) {# if not qin
      if(is.null(optns$nqSup)) {
        optns$nqSup <- 201
      }
      optns$qSup <- seq(0,1,length.out = optns$nqSup)
    } else {# if qin
      diffSupp <- TRUE
      if (length(unique(sapply(supin, length))) == 1) {
        if (!sum(diff(matrix(unlist(supin), nrow = n, byrow = TRUE)))) {
          diffSupp <- FALSE
        }
      }
      if (diffSupp) {
        if(is.null(optns$nqSup)) {
          optns$nqSup <- 201
        }
        optns$qSup <- seq(0,1,length.out = optns$nqSup)
        ls <- lapply(1:n, function(i) approx(x = supin[[i]], y = ls[[i]], xout = optns$qSup)$y)
      } else {
        optns$qSup <- supin[[1]]
        optns$nqSup <- length(optns$qSup)
      }
    }
  }
  qSup <- optns$qSup
  if (tin == 3) {
    ls <- lapply(1:n, function(i) fdadensity::dens2quantile(ls[[i]], dSup = supin[[i]], qSup = qSup))
  }
  if (tin < 3) {
    optnsDen <- optns
    if (!is.null(optnsDen$kernelDen))
      names(optnsDen)[which(names(optnsDen) == "kernelDen")] <- "kernel"
    if (!is.null(optnsDen$bwDen))
      names(optnsDen)[which(names(optnsDen) == "bwDen")] <- "userBwMu"
    if (!is.null(optnsDen$ndSup))
      names(optnsDen)[which(names(optnsDen) == "ndSup")] <- "nRegGrid"
    if (!is.null(optnsDen$dSup))
      names(optnsDen)[which(names(optnsDen) == "dSup")] <- "outputGrid"
    if (tin == 1) {
      den <- lapply(ls, CreateDensity, optns = optnsDen)
    } else {
      den <- lapply(ls, function(histogram) {
        CreateDensity(histogram = histogram, optns = optnsDen)
      })
    }
    ls <- lapply(den, function(deni) fdadensity::dens2quantile(deni$y, dSup = deni$x, qSup = qSup))
  }
  sizes <- as.vector(table(group))
  k <- length(sizes) # number of groups
  data <- ls[order(group)]
  # data <- unlist(split(ls, group), recursive = FALSE)
  if (optns$boot) {
    bootRes <- boot::boot(data = data, statistic = DenANOVAStatistic, 
                          R = optns$R, sizes = sizes, qSup = qSup)
    pvalBoot <- length(which(bootRes$t > bootRes$t0)) / optns$R
    pvalAsy <- 1 - pchisq(bootRes$t0, df = k - 1)
    res <- list(pvalAsy = pvalAsy, pvalBoot = pvalBoot, optns = optns)
  } else {
    t0 <- DenANOVAStatistic(data, 1:length(group), sizes, qSup)
    pvalAsy <- 1 - pchisq(t0, df = k - 1)
    res <- list(pvalAsy = pvalAsy, optns = optns)
  }
  class(res) <- "DenANOVA"
  res
}

Try the frechet package in your browser

Any scripts or data that you put into this service are public.

frechet documentation built on May 29, 2024, 7:35 a.m.