Nothing
# DIRICHLET DISTRIBUTION / CONCENTRATION PARAMETRIZATION
# Parameters Function ----------------------------------------------------------
distr_dirichlet_conc_parameters <- function(n) {
group_of_par_names <- rep("conc", times = n)
par_names <- paste0("conc", 1:n)
par_support <- rep("positive", times = n)
res_parameters <- list(group_of_par_names = group_of_par_names, par_names = par_names, par_support = par_support)
return(res_parameters)
}
# ------------------------------------------------------------------------------
# Density Function -------------------------------------------------------------
distr_dirichlet_conc_density <- function(y, f) {
res_density <- exp(distr_dirichlet_conc_loglik(y = y, f = f))
return(res_density)
}
# ------------------------------------------------------------------------------
# Log-Likelihood Function ------------------------------------------------------
distr_dirichlet_conc_loglik <- function(y, f) {
t <- nrow(f)
n <- ncol(f)
res_loglik <- lgamma(rowSums(f)) + rowSums((f - 1) * log(y) - lgamma(f))
res_loglik <- matrix(res_loglik, nrow = t, ncol = 1L)
return(res_loglik)
}
# ------------------------------------------------------------------------------
# Mean Function ----------------------------------------------------------------
distr_dirichlet_conc_mean <- function(f) {
t <- nrow(f)
n <- ncol(f)
res_mean <- f / rowSums(f)
return(res_mean)
}
# ------------------------------------------------------------------------------
# Variance Function ------------------------------------------------------------
distr_dirichlet_conc_var <- function(f) {
t <- nrow(f)
n <- ncol(f)
f_sum <- rowSums(f)
res_mean <- f / f_sum
res_var <- array(0, dim = c(t, n, n))
for (i in 1:t) {
res_var[i, , ] <- (diag(res_mean[i, ]) - t(res_mean[i, , drop = FALSE]) %*% res_mean[i, , drop = FALSE]) / (1 + f_sum[i])
}
return(res_var)
}
# ------------------------------------------------------------------------------
# Score Function ---------------------------------------------------------------
distr_dirichlet_conc_score <- function(y, f) {
t <- nrow(f)
n <- ncol(f)
res_score <- digamma(rowSums(f)) - digamma(f) + log(y)
return(res_score)
}
# ------------------------------------------------------------------------------
# Fisher Information Function --------------------------------------------------
distr_dirichlet_conc_fisher <- function(f) {
t <- nrow(f)
n <- ncol(f)
res_fisher <- array(0, dim = c(t, n, n))
for (i in 1:t) {
res_fisher[i, , ] <- diag(trigamma(f[i, ])) - trigamma(sum(f[i, ]))
}
return(res_fisher)
}
# ------------------------------------------------------------------------------
# Random Generation Function ---------------------------------------------------
distr_dirichlet_conc_random <- function(t, f) {
n <- length(f)
res_random <- matrix(stats::rgamma(n * t, shape = f), nrow = t, ncol = n, byrow = TRUE)
res_random <- res_random / rowSums(res_random)
return(res_random)
}
# ------------------------------------------------------------------------------
# Starting Estimates Function --------------------------------------------------
distr_dirichlet_conc_start <- function(y) {
y_mean <- colMeans(y, na.rm = TRUE)
y_var <- stats::var(y, na.rm = TRUE)
res_start <- pmax(y_mean * (y_mean * (1 - y_mean) / diag(y_var) - 1), 1e-6)
return(res_start)
}
# ------------------------------------------------------------------------------
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.