Nothing
# LOGIT-NORMAL DISTRIBUTION / LOGIT-MEAN-VARIANCE PARAMETRIZATION
# Parameters Function ----------------------------------------------------------
distr_logitnorm_logitmeanvar_parameters <- function(n) {
group_of_par_names <- c("logitvar", "logitvar")
par_names <- c("logitvar", "logitvar")
par_support <- c("real", "positive")
res_parameters <- list(group_of_par_names = group_of_par_names, par_names = par_names, par_support = par_support)
return(res_parameters)
}
# ------------------------------------------------------------------------------
# Density Function -------------------------------------------------------------
distr_logitnorm_logitmeanvar_density <- function(y, f) {
t <- nrow(f)
m <- f[, 1, drop = FALSE]
s <- f[, 2, drop = FALSE]
res_density <- be_silent(stats::dnorm(log(y / (1 - y)), mean = m, sd = sqrt(s)))
return(res_density)
}
# ------------------------------------------------------------------------------
# Log-Likelihood Function ------------------------------------------------------
distr_logitnorm_logitmeanvar_loglik <- function(y, f) {
t <- nrow(f)
m <- f[, 1, drop = FALSE]
s <- f[, 2, drop = FALSE]
res_loglik <- be_silent(stats::dnorm(log(y / (1 - y)), mean = m, sd = sqrt(s), log = TRUE))
return(res_loglik)
}
# ------------------------------------------------------------------------------
# Mean Function ----------------------------------------------------------------
distr_logitnorm_logitmeanvar_mean <- function(f) {
t <- nrow(f)
m <- f[, 1, drop = FALSE]
s <- f[, 2, drop = FALSE]
k <- 1000L
q <- stats::qnorm((1:(k - 1)) / k, mean = m, sd = sqrt(s))
res_mean <- 1 / (k - 1) * sum(1 / (1 + exp(-q)))
return(res_mean)
}
# ------------------------------------------------------------------------------
# Variance Function ------------------------------------------------------------
distr_logitnorm_logitmeanvar_var <- function(f) {
t <- nrow(f)
m <- f[, 1, drop = FALSE]
s <- f[, 2, drop = FALSE]
k <- 1000L
q <- stats::qnorm((1:(k - 1)) / k, mean = m, sd = sqrt(s))
res_var <- 1 / (k - 1) * sum(1 / (1 + exp(-q))^2) - (1 / (k - 1) * sum(1 / (1 + exp(-q))))^2
res_var <- array(res_var, dim = c(t, 1, 1))
return(res_var)
}
# ------------------------------------------------------------------------------
# Score Function ---------------------------------------------------------------
distr_logitnorm_logitmeanvar_score <- function(y, f) {
t <- nrow(f)
m <- f[, 1, drop = FALSE]
s <- f[, 2, drop = FALSE]
res_score <- matrix(0, nrow = t, ncol = 2L)
res_score[, 1] <- (log(y / (1 - y)) - m) / s
res_score[, 2] <- (log(y / (1 - y)) - m)^2 / (2 * s^2) - 1 / (2 * s)
return(res_score)
}
# ------------------------------------------------------------------------------
# Fisher Information Function --------------------------------------------------
distr_logitnorm_logitmeanvar_fisher <- function(f) {
t <- nrow(f)
m <- f[, 1, drop = FALSE]
s <- f[, 2, drop = FALSE]
res_fisher <- array(0, dim = c(t, 2L, 2L))
res_fisher[, 1, 1] <- 1 / s
res_fisher[, 2, 2] <- 1 / (2 * s^2)
return(res_fisher)
}
# ------------------------------------------------------------------------------
# Random Generation Function ---------------------------------------------------
distr_logitnorm_logitmeanvar_random <- function(t, f) {
m <- f[1]
s <- f[2]
res_random <- be_silent(1 / (1 + exp(-stats::rnorm(t, mean = m, sd = sqrt(s)))))
res_random <- matrix(res_random, nrow = t, ncol = 1L)
return(res_random)
}
# ------------------------------------------------------------------------------
# Starting Estimates Function --------------------------------------------------
distr_logitnorm_logitmeanvar_start <- function(y) {
ly_mean <- mean(log(y / (1 - y)), na.rm = TRUE)
ly_var <- stats::var(log(y / (1 - y)), na.rm = TRUE)
m <- ly_mean
s <- max(ly_var, 1e-6)
res_start <- c(m, s)
return(res_start)
}
# ------------------------------------------------------------------------------
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.