Nothing
# ZERO-INFLATED SKELLAM DISTRIBUTION / DIFFERENCE PARAMETRIZATION
# Parameters Function ----------------------------------------------------------
distr_ziskellam_diff_parameters <- function(n) {
group_of_par_names <- c("rate", "rate", "infl")
par_names <- c("rate1", "rate2", "infl")
par_support <- c("positive", "positive", "probability")
res_parameters <- list(group_of_par_names = group_of_par_names, par_names = par_names, par_support = par_support)
return(res_parameters)
}
# ------------------------------------------------------------------------------
# Density Function -------------------------------------------------------------
distr_ziskellam_diff_density <- function(y, f) {
t <- nrow(f)
r1 <- f[, 1, drop = FALSE]
r2 <- f[, 2, drop = FALSE]
p <- f[, 3, drop = FALSE]
res_density <- be_silent((y == 0L) * p + (1 - p) * exp(-(r1 + r2)) * (r1 / r2)^(y / 2) * besselI(x = 2 * sqrt(r1 * r2), nu = y))
res_density[!is.finite(res_density)] <- -Inf
return(res_density)
}
# ------------------------------------------------------------------------------
# Log-Likelihood Function ------------------------------------------------------
distr_ziskellam_diff_loglik <- function(y, f) {
t <- nrow(f)
r1 <- f[, 1, drop = FALSE]
r2 <- f[, 2, drop = FALSE]
p <- f[, 3, drop = FALSE]
res_loglik <- matrix(0, nrow = t, ncol = 1L)
res_loglik[y != 0L, ] <- be_silent(log(1 - p[y != 0L, ]) + y[y != 0L, ] / 2 * log(r1[y != 0L, ] / r2[y != 0L, ]) - r1[y != 0L, ] - r2[y != 0L, ] + log(besselI(x = 2 * sqrt(r1[y != 0L, ] * r2[y != 0L, ]), nu = y[y != 0L, ])))
res_loglik[y == 0L, ] <- be_silent(log(p[y == 0L, ] + (1 - p[y == 0L, ]) * exp(-(r1[y == 0L, ] + r2[y == 0L, ])) * besselI(x = 2 * sqrt(r1[y == 0L, ] * r2[y == 0L, ]), nu = 0)))
res_loglik[!is.finite(res_loglik)] <- -Inf
return(res_loglik)
}
# ------------------------------------------------------------------------------
# Mean Function ----------------------------------------------------------------
distr_ziskellam_diff_mean <- function(f) {
t <- nrow(f)
r1 <- f[, 1, drop = FALSE]
r2 <- f[, 2, drop = FALSE]
p <- f[, 3, drop = FALSE]
res_mean <- (1 - p) * (r1 - r2)
return(res_mean)
}
# ------------------------------------------------------------------------------
# Variance Function ------------------------------------------------------------
distr_ziskellam_diff_var <- function(f) {
t <- nrow(f)
r1 <- f[, 1, drop = FALSE]
r2 <- f[, 2, drop = FALSE]
p <- f[, 3, drop = FALSE]
res_var <- (1 - p) * (p * (r1 - r2)^2 + r1 + r2)
res_var <- array(res_var, dim = c(t, 1, 1))
return(res_var)
}
# ------------------------------------------------------------------------------
# Score Function ---------------------------------------------------------------
distr_ziskellam_diff_score <- function(y, f) {
t <- nrow(f)
r1 <- f[, 1, drop = FALSE]
r2 <- f[, 2, drop = FALSE]
p <- f[, 3, drop = FALSE]
bi_0 <- besselI(x = 2 * sqrt(r1 * r2), nu = 0)
bi_1 <- besselI(x = 2 * sqrt(r1 * r2), nu = 1)
res_score <- matrix(0, nrow = t, ncol = 3L)
res_score[, 1] <- (y == 0L) * (((p - 1) * (sqrt(r1 * r2) * bi_0 - r2 * bi_1)) / (sqrt(r1 * r2) * (p * exp(r1 + r2) + (1 - p) * bi_0))) + (y != 0L) * (sqrt(r2 / r1) * besselI(x = 2 * sqrt(r1 * r2), nu = y - 1) / besselI(x = 2 * sqrt(r1 * r2), nu = y) - 1)
res_score[, 2] <- (y == 0L) * (((p - 1) * (sqrt(r1 * r2) * bi_0 - r1 * bi_1)) / (sqrt(r1 * r2) * (p * exp(r1 + r2) + (1 - p) * bi_0))) + (y != 0L) * (sqrt(r1 / r2) * besselI(x = 2 * sqrt(r1 * r2), nu = y - 1) / besselI(x = 2 * sqrt(r1 * r2), nu = y) - y / r2 - 1)
res_score[, 3] <- (y == 0L) * ((exp(r1 + r2) - bi_0) / (p * exp(r1 + r2) + (1 - p) * bi_0)) + (y != 0L) * (1 / (p - 1))
return(res_score)
}
# ------------------------------------------------------------------------------
# Fisher Information Function --------------------------------------------------
distr_ziskellam_diff_fisher <- function(f) {
t <- nrow(f)
r1 <- f[, 1, drop = FALSE]
r2 <- f[, 2, drop = FALSE]
p <- f[, 3, drop = FALSE]
bi_0 <- besselI(x = 2 * sqrt(r1 * r2), nu = 0)
bi_1 <- besselI(x = 2 * sqrt(r1 * r2), nu = 0)
rat_bi_r <- besselI(x = 2 * sqrt(r1 * r2), nu = r1 - r2 - 1) / besselI(x = 2 * sqrt(r1 * r2), nu = r1 - r2)
res_fisher <- array(0, dim = c(t, 3L, 3L))
res_fisher[, 1, 1] <- (1 - p) * (1 - exp(-r1 - r2) * bi_0) * (1 - sqrt(r2 / r1) * rat_bi_r)^2 + ((1 - p)^2 * exp(-r1 - r2) * (sqrt(r1 * r2) * bi_0 - r2 * bi_1)^2) / (r1 * r2 * (p * exp(r1 + r2) + (1 - p) * bi_0))
res_fisher[, 1, 2] <- (1 - p) * (1 - exp(-r1 - r2) * bi_0) * (1 - sqrt(r2 / r1) * rat_bi_r) * (r1 / r2 - sqrt(r1 / r2) * rat_bi_r) + ((1 - p)^2 * exp(-r1 - r2) * (sqrt(r1 * r2) * bi_0 - r2 * bi_1) * (sqrt(r1 * r2) * bi_0 - r1 * bi_1)) / (r1 * r2 * (p * exp(r1 + r2) + (1 - p) * bi_0))
res_fisher[, 1, 3] <- ((p - 1) * (1 - exp(-r1 - r2) * bi_0) * (sqrt(r1 * r2) * bi_0 - r2 * bi_1)) / (sqrt(r1 * r2) * (p * exp(r1 + r2) + (1 - p) * bi_0))
res_fisher[, 2, 1] <- res_fisher[, 1, 2]
res_fisher[, 2, 2] <- (1 - p) * (1 - exp(-r1 - r2) * bi_0) * (r1 / r2 - sqrt(r1 / r2) * rat_bi_r)^2 + ((1 - p)^2 * exp(-r1 - r2) * (sqrt(r1 * r2) * bi_0 - r1 * bi_1)^2) / (r1 * r2 * (p * exp(r1 + r2) + (1 - p) * bi_0))
res_fisher[, 2, 3] <- ((p - 1) * (1 - exp(-r1 - r2) * bi_0) * (sqrt(r1 * r2) * bi_0 - r1 * bi_1)) / (sqrt(r1 * r2) * (p * exp(r1 + r2) + (1 - p) * bi_0))
res_fisher[, 3, 1] <- res_fisher[, 1, 3]
res_fisher[, 3, 2] <- res_fisher[, 2, 3]
res_fisher[, 3, 3] <- (exp(r1 + r2) - bi_0) / ((1 - p) * (p * exp(r1 + r2) + (1 - p) * bi_0))
return(res_fisher)
}
# ------------------------------------------------------------------------------
# Random Generation Function ---------------------------------------------------
distr_ziskellam_diff_random <- function(t, f) {
r1 <- f[1]
r2 <- f[2]
p <- f[3]
res_random <- sample(c(0L, NA_real_), size = t, replace = TRUE, prob = c(p, 1 - p))
res_random[is.na(res_random)] <- be_silent(stats::rpois(sum(is.na(res_random)), lambda = r1) - stats::rpois(sum(is.na(res_random)), lambda = r2))
res_random <- matrix(res_random, nrow = t, ncol = 1L)
return(res_random)
}
# ------------------------------------------------------------------------------
# Starting Estimates Function --------------------------------------------------
distr_ziskellam_diff_start <- function(y) {
y_mean <- mean(y, na.rm = TRUE)
y_var <- stats::var(y, na.rm = TRUE)
y_zero <- mean(y == 0L, na.rm = TRUE)
p <- 0
r1 <- (y_var + y_mean) / 2
r2 <- (y_var - y_mean) / 2
for (i in 1:1e3) {
p <- (y_zero - exp(-(r1 + r2)) * besselI(x = 2 * sqrt(r1 * r2), nu = y)) / (1 - exp(-(r1 + r2)) * besselI(x = 2 * sqrt(r1 * r2), nu = y))
r1 <- y_mean / (1 - p) + r2
r2 <- y_var / (1 - p) - p * y_mean^2 / (1 - p)^2 - r1
}
p <- max(min(p, 1 - 1e-6), 1e-6)
r1 <- max(r1, 1e-6)
r2 <- max(r2, 1e-6)
res_start <- c(r1, r2, p)
return(res_start)
}
# ------------------------------------------------------------------------------
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.