R/distr_ziskellam_meandisp.R

Defines functions distr_ziskellam_meandisp_start distr_ziskellam_meandisp_random distr_ziskellam_meandisp_fisher distr_ziskellam_meandisp_score distr_ziskellam_meandisp_var distr_ziskellam_meandisp_mean distr_ziskellam_meandisp_loglik distr_ziskellam_meandisp_density distr_ziskellam_meandisp_parameters

# ZERO-INFLATED SKELLAM DISTRIBUTION / MEAN-DISPERSION PARAMETRIZATION


# Parameters Function ----------------------------------------------------------
distr_ziskellam_meandisp_parameters <- function(n) {
  group_of_par_names <- c("mean", "disp", "infl")
  par_names <- c("mean", "disp", "infl")
  par_support <- c("real", "positive", "probability")
  res_parameters <- list(group_of_par_names = group_of_par_names, par_names = par_names, par_support = par_support)
  return(res_parameters)
}
# ------------------------------------------------------------------------------


# Density Function -------------------------------------------------------------
distr_ziskellam_meandisp_density <- function(y, f) {
  t <- nrow(f)
  m <- f[, 1, drop = FALSE]
  s <- f[, 2, drop = FALSE]
  p <- f[, 3, drop = FALSE]
  res_density <- be_silent((y == 0L) * p + (1 - p) * exp(-abs(m) - s) * ((abs(m) + m + s) / (abs(m) - m + s))^(y / 2) * besselI(x = sqrt(s^2 + 2 * abs(m) * s), nu = y))
  res_density[!is.finite(res_density)] <- -Inf
  return(res_density)
}
# ------------------------------------------------------------------------------


# Log-Likelihood Function ------------------------------------------------------
distr_ziskellam_meandisp_loglik <- function(y, f) {
  t <- nrow(f)
  m <- f[, 1, drop = FALSE]
  s <- f[, 2, drop = FALSE]
  p <- f[, 3, drop = FALSE]
  res_loglik <- matrix(0, nrow = t, ncol = 1L)
  res_loglik[y != 0L, ] <- be_silent(log(1 - p[y != 0L, ]) + y[y != 0L, ] / 2 * log((abs(m[y != 0L, ]) + m[y != 0L, ] + s[y != 0L, ]) / (abs(m[y != 0L, ]) - m[y != 0L, ] + s[y != 0L, ])) - abs(m[y != 0L, ]) - s[y != 0L, ] + log(besselI(x = sqrt(s[y != 0L, ]^2 + 2 * abs(m[y != 0L, ]) * s[y != 0L, ]), nu = y[y != 0L, ])))
  res_loglik[y == 0L, ] <- be_silent(log(p[y == 0L, ] + (1 - p[y == 0L, ]) * exp(-abs(m[y == 0L, ]) - s[y == 0L, ]) * besselI(x = sqrt(s[y == 0L, ]^2 + 2 * abs(m[y == 0L, ]) * s[y == 0L, ]), nu = 0)))
  res_loglik[!is.finite(res_loglik)] <- -Inf
  return(res_loglik)
}
# ------------------------------------------------------------------------------


# Mean Function ----------------------------------------------------------------
distr_ziskellam_meandisp_mean <- function(f) {
  t <- nrow(f)
  m <- f[, 1, drop = FALSE]
  s <- f[, 2, drop = FALSE]
  p <- f[, 3, drop = FALSE]
  res_mean <- (1 - p) * m
  return(res_mean)
}
# ------------------------------------------------------------------------------


# Variance Function ------------------------------------------------------------
distr_ziskellam_meandisp_var <- function(f) {
  t <- nrow(f)
  m <- f[, 1, drop = FALSE]
  s <- f[, 2, drop = FALSE]
  p <- f[, 3, drop = FALSE]
  res_var <- (1 - p) * (abs(m) + s + m^2 * p)
  res_var <- array(res_var, dim = c(t, 1, 1))
  return(res_var)
}
# ------------------------------------------------------------------------------


# Score Function ---------------------------------------------------------------
distr_ziskellam_meandisp_score <- function(y, f) {
  t <- nrow(f)
  m <- f[, 1, drop = FALSE]
  s <- f[, 2, drop = FALSE]
  p <- f[, 3, drop = FALSE]
  bi_0 <- besselI(x = sqrt(s^2 + 2 * abs(m) * s), nu = 0)
  bi_1 <- besselI(x = sqrt(s^2 + 2 * abs(m) * s), nu = 1)
  tri_bi_y <- (besselI(x = sqrt(s^2 + 2 * abs(m) * s), nu = y - 1) + besselI(x = sqrt(s^2 + 2 * abs(m) * s), nu = y + 1)) / besselI(x = sqrt(s^2 + 2 * abs(m) * s), nu = y)
  res_score <- matrix(0, nrow = t, ncol = 3L)
  res_score[, 1] <- (y == 0L) * ((sign(m) * (1 - p) * (sqrt(s^2 + 2 * abs(m) * s) * bi_0 - s * bi_1)) / (sqrt(s^2 + 2 * abs(m) * s) * (p * bi_0 - p * exp(abs(m) + s) - bi_0))) + (y != 0L) * (y / (2 * abs(m) + s) + (sign(m) * s) / (2 * sqrt(s^2 + 2 * abs(m) * s)) * tri_bi_y - sign(m))
  res_score[, 2] <- (y == 0L) * (((p - 1) * (sqrt(s^2 + 2 * abs(m) * s) * bi_0 - (abs(m) + s) * bi_1)) / (sqrt(s^2 + 2 * abs(m) * s) * (p * exp(abs(m) + s) + (1 - p) * bi_0))) + (y != 0L) * ((-m * y) / (s^2 + 2 * abs(m) * s) + (abs(m) + s) / (2 * sqrt(s^2 + 2 * abs(m) * s)) * tri_bi_y - 1)
  res_score[, 3] <- (y == 0L) * ((exp(abs(m) + s) - bi_0) / (p * exp(abs(m) + s) + (1 - p) * bi_0)) + (y != 0L) * (1 / (p - 1))
  return(res_score)
}
# ------------------------------------------------------------------------------


# Fisher Information Function --------------------------------------------------
distr_ziskellam_meandisp_fisher <- function(f) {
  t <- nrow(f)
  m <- f[, 1, drop = FALSE]
  s <- f[, 2, drop = FALSE]
  p <- f[, 3, drop = FALSE]
  bi_0 <- besselI(x = sqrt(s^2 + 2 * abs(m) * s), nu = 0)
  bi_1 <- besselI(x = sqrt(s^2 + 2 * abs(m) * s), nu = 1)
  tri_bi_m <- (besselI(x = sqrt(s^2 + 2 * abs(m) * s), nu = m - 1) + besselI(x = sqrt(s^2 + 2 * abs(m) * s), nu = m + 1)) / besselI(x = sqrt(s^2 + 2 * abs(m) * s), nu = m)
  res_fisher <- array(0, dim = c(t, 3L, 3L))
  res_fisher[, 1, 1] <- s * (1 - p) * (1 - exp(-abs(m) - s) * bi_0) / (8 * abs(m) + 4 * s) * ((2 * abs(m) + 2 * s) / sqrt(s^2 + 2 * abs(m) * s) - tri_bi_m)^2 + ((1 - p)^2 * exp(-abs(m) - s) * (sqrt(s^2 + 2 * abs(m) * s) * bi_0 - s * bi_1)^2) / ((s^2 + 2 * abs(m) * s) * (p * exp(abs(m) + s) + (1 - p) * bi_0))
  res_fisher[, 1, 2] <- sign(m) * s * (1 - p) * (abs(m) + s) * (1 - exp(-abs(m) - s) * bi_0) / (4 * s^2 + 8 * abs(m) * s) * ((2 * abs(m) + 2 * s) / sqrt(s^2 + 2 * abs(m) * s) - tri_bi_m)^2 + (sign(m) * (1 - p)^2 * exp(-abs(m) - s) * (sqrt(s^2 + 2 * abs(m) * s) * bi_0 - s * bi_1) * (sqrt(s^2 + 2 * abs(m) * s) * bi_0 - (abs(m) + s) * bi_1)) / ((s^2 + 2 * abs(m) * s) * (p * exp(abs(m) + s) + (1 - p) * bi_0))
  res_fisher[, 1, 3] <- (sign(m) * (p - 1) * (1 - exp(-abs(m) - s) * bi_0) * (sqrt(s^2 + 2 * abs(m) * s) * bi_0 - s * bi_1)) / (sqrt(s^2 + 2 * abs(m) * s) * (p * exp(abs(m) + s) + (1 - p) * bi_0))
  res_fisher[, 2, 1] <- res_fisher[, 1, 2]
  res_fisher[, 2, 2] <- (1 - p) * (abs(m) + s)^2 * (1 - exp(-abs(m) - s) * bi_0) / (4 * s^2 + 8 * abs(m) * s) * ((2 * abs(m) + 2 * s) / sqrt(s^2 + 2 * abs(m) * s) - tri_bi_m)^2 + ((1 - p)^2 * exp(-abs(m) - s) * (sqrt(s^2 + 2 * abs(m) * s) * bi_0 - (abs(m) + s) * bi_1)^2) / ((s^2 + 2 * abs(m) * s) * (p * exp(abs(m) + s) + (1 - p) * bi_0))
  res_fisher[, 2, 3] <- ((p - 1) * (1 - exp(-abs(m) - s) * bi_0) * (sqrt(s^2 + 2 * abs(m) * s) * bi_0 - (abs(m) + s) * bi_1)) / (sqrt(s^2 + 2 * abs(m) * s) * (p * exp(abs(m) + s) + (1 - p) * bi_0))
  res_fisher[, 3, 1] <- res_fisher[, 1, 3]
  res_fisher[, 3, 2] <- res_fisher[, 2, 3]
  res_fisher[, 3, 3] <- (exp(abs(m) + s) - bi_0) / ((1 - p) * (p * exp(abs(m) + s) + (1 - p) * bi_0))
  return(res_fisher)
}
# ------------------------------------------------------------------------------


# Random Generation Function ---------------------------------------------------
distr_ziskellam_meandisp_random <- function(t, f) {
  m <- f[1]
  s <- f[2]
  p <- f[3]
  res_random <- sample(c(0L, NA_real_), size = t, replace = TRUE, prob = c(p, 1 - p))
  res_random[is.na(res_random)] <- be_silent(stats::rpois(sum(is.na(res_random)), lambda = (abs(m) + m + s) / 2) - stats::rpois(sum(is.na(res_random)), lambda = (abs(m) - m + s) / 2))
  res_random <- matrix(res_random, nrow = t, ncol = 1L)
  return(res_random)
}
# ------------------------------------------------------------------------------


# Starting Estimates Function --------------------------------------------------
distr_ziskellam_meandisp_start <- function(y) {
  y_mean <- mean(y, na.rm = TRUE)
  y_var <- stats::var(y, na.rm = TRUE)
  y_zero <- mean(y == 0L, na.rm = TRUE)
  p <- 0
  m <- y_mean
  s <- y_var - abs(y_mean)
  for (i in 1:1e3) {
    p <- (y_zero - exp(-abs(m) - s) * besselI(x = sqrt(s^2 + 2 * abs(m) * s), nu = 0)) / (1 - exp(-abs(m) - s) * besselI(x = sqrt(s^2 + 2 * abs(m) * s), nu = 0))
    m <- y_mean / (1 - p)
    s <- y_var / (1 - p) - abs(m) - m^2 * p
  }
  p <- max(min(p, 1 - 1e-6), 1e-6)
  s <- max(s, 1e-6)
  res_start <- c(m, s, p)
  return(res_start)
}
# ------------------------------------------------------------------------------

Try the gasmodel package in your browser

Any scripts or data that you put into this service are public.

gasmodel documentation built on Aug. 30, 2023, 1:09 a.m.