Description Usage Arguments Details Value Author(s) References See Also Examples
View source: R/synthfiberss2z.R
synthfiberss2z
simulates apparent diffusion coefficient (ADC) profiles in multi-direction, diffusion-weighted MR data, for testing ODF reconstruction and fibre orientation estimation.
1 2 |
g0 |
matrix of 3D points on the S2 shell used in simulation. |
angles |
angles in degrees of fibres to be used in simulation (default: two fibres with angles |
b |
strength of the magnetic diffusion gradient (default b-value=3000). |
S0 |
signal intensity without the diffusion weighting (default: 1). |
sigma |
Rician noise level used in simulation (default |
logplot |
logical variable for selecting log-scale (default |
pos |
3D positional coordinate (default |
showglyph |
logical variable controlling visualization of voxel glyph (default: |
new |
starts a new figure if |
wi |
weight given to fiber's volume fraction. Example for two fibers with different weights |
The simulation models the profile of the ADC over the sphere. Prolate diffusion tensor (DT) white matter profiles are estimated with eigenvalues {1700, 200, 200}(x 10^(-6) mm2/s) (see D.C. Alexander, 2002). Diffusion profiles for crossing fibres are simulated from prolate DTs in equal proportions, where each fibre is represented by a prolate DT. Noisy profiles may be simulated by adding Rician noise to the simulated diffusion profile, with a user defined standard deviation level specified as σ (SNR=1/σ). Typically, noise values of SNR~30 are used in simulated dMRI.
synthfiberss2z
plots the diffusion profile and returns the synthesized diffusion signal.
Adelino Ferreira da Silva, Universidade Nova de Lisboa, Faculdade de Ciencias e Tecnologia, Portugal, afs at fct.unl.pt
Barber, C. B., Habel, K., Grasman, R., Gramacy, R. B., Stahel, A., and Sterratt, D. C. geometry: Mesh generation and surface tessellation, 2012. R package version 0.3-2.
Adler, D., and Murdoch, D. rgl: 3D visualization device system (OpenGL), 2012. R package version 0.92.880.
Alexander, D. C., Barker, G. J., and Arridge, S. R. Detection and Modeling of Non-Gaussian Apparent Diffusion Coefficient Profiles in Human Brain Data. Magnetic Resonance in Medicine 48 (2002), 331-340.
simulglyph.vmf
,
plotglyph
gqi.odfvmflines
,
rgbvolmap
,
gqi.odfpeaks
,
gqi.odfpeaklines
,
gqi.odfvxgrid
,
simulglyph.vmf
,
simul.fandtasia
,
simul.simplefield
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | ## Not run:
## S2 grid
s2 <- s2tessel.zorder(depth=3)
g0 <- s2$pc
## synthetize diffusion signal (two crossing fibres)
open3d()
angles=c(20,100); b=3000
S <- synthfiberss2z(g0=g0, angles=angles, b=b)
## synthetize signal with different volume fractions
S <- synthfiberss2z(g0=g0, angles=angles, b=b, wi=c(0.7,0.3))
## synthesize diffusion signal (three crossing fibres)
angles <- c(0,60,120); b <- 3000
S <- synthfiberss2z(g0=g0, angles=angles, b=b)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.