inst/doc/Overview.R

## ----setup, include=FALSE-----------------------------------------------------
TRAVIS <- !identical(tolower(Sys.getenv("TRAVIS")), "true")
knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>",
  purl = TRAVIS
)

## ----fig0, echo=FALSE, message=FALSE, fig.cap="Fig.1 : Three commonly used ways to generate neighbour graphs for distance calculations.", fig.align="center"----
library("gdistance")
rex <- raster(matrix(1, 4, 4))

a <- rep(c(1.3333), times = 5)
b <- c(-1.3333, -0.6666, 0, 0.6666, 1.3333)

x1 <- c(-a, b)
x2 <- c(a, b)
y1 <- c(b, -a)
y2 <- c(b, a)
x <- cbind(x1, x2)
y <- cbind(y1, y2)

par(mfrow = c(1, 3), mar = c(2, 2, 2, 2), oma = c(0, 0, 0, 0) + 0.1, cex.main = 1)

x4 <- transition(rex, mean, 4)
g4 <- graph.adjacency(transitionMatrix(x4), mode = "undirected")
gridLayout <- xyFromCell(x4, 1:ncell(x4))
plot(g4, layout = gridLayout, edge.color = "black", vertex.color = "black", vertex.label = NA, main = "4 neighbours")
for (i in 1:dim(x)[1]) {
  lines(x[i, ], y[i, ], col = "lightgray")
}
plot(g4, layout = gridLayout, add = TRUE, edge.color = "black", vertex.color = "black", vertex.label = NA)

x8 <- transition(rex, mean, 8)
g8 <- graph.adjacency(transitionMatrix(x8), mode = "undirected")
plot(g8, layout = gridLayout, edge.color = "black", vertex.color = "black", vertex.label = NA, main = "8 neighbours")
for (i in 1:dim(x)[1]) {
  lines(x[i, ], y[i, ], col = "lightgray")
}
plot(g8, layout = gridLayout, add = TRUE, edge.color = "black", vertex.color = "black", vertex.label = NA)

x16 <- transition(rex, mean, 16)
g16 <- graph.adjacency(transitionMatrix(x16), mode = "undirected")
plot(g16, layout = gridLayout, edge.color = "black", vertex.color = "black", vertex.label = NA, main = "16 neighbours")
for (i in 1:dim(x)[1]) {
  lines(x[i, ], y[i, ], col = "lightgray")
}
plot(g16, layout = gridLayout, add = TRUE, edge.color = "black", vertex.color = "black", vertex.label = NA)

## ----gdistance-1--------------------------------------------------------------
library("gdistance")
set.seed(123)
r <- raster(ncol = 3, nrow = 3)
r[] <- 1:ncell(r)
r

## ----figure1, fig=TRUE, height = 3.9, echo=FALSE, fig.cap="Fig. 2: Lon-lat grid with cell numbers of a 3 × 3 raster", fig.align="center"----
plot(r, main = "r", xlab = "Longitude (degrees)", ylab = "Latitude (degrees)")
text(r)

## ----gdistance-3--------------------------------------------------------------
r[] <- 1
tr1 <- transition(r, transitionFunction = mean, directions = 8)

## ----gdistance-4--------------------------------------------------------------
tr1

## ----gdistance-5--------------------------------------------------------------
r[] <- runif(9)
ncf <- function(x) max(x) - x[1] + x[2]
tr2 <- transition(r, ncf, 4, symm = FALSE)
tr2

## ----gdistance-6--------------------------------------------------------------
tr3 <- tr1 * tr2
tr3 <- tr1 + tr2
tr3 <- tr1 * 3
tr3 <- sqrt(tr1)

## ----gdistance-7--------------------------------------------------------------
tr3[cbind(1:9, 1:9)] <- tr2[cbind(1:9, 1:9)]
tr3[1:9, 1:9] <- tr2[1:9, 1:9]
tr3[1:5, 1:5]

## ----gdistance-8, fig=TRUE, echo=FALSE, fig.cap= "Fig. 3: Visualizing a TransitionLayer with function image", fig.align="center"----
image(transitionMatrix(tr1))

## ----figure3,fig=TRUE, echo=FALSE, fig.cap="Fig. 4: Visualizing a TransitionLayer using the function raster. The result is a lon-lat grid with the same extent as the original RasterLayer.", fig.align="center"----
plot(raster(tr3), main = "raster(tr3)", xlab = "Longitude (degrees)", ylab = "Latitude (degrees)")

## ----gdistance-9--------------------------------------------------------------
tr1C <- geoCorrection(tr1, type = "c")
tr2C <- geoCorrection(tr2, type = "c")

## ----gdistance-10-------------------------------------------------------------
r3 <- raster(ncol = 18, nrow = 9)
r3 <- setValues(r3, runif(18 * 9) + 5)

tr3 <- transition(r3, mean, 4)
tr3C <- geoCorrection(tr3, type = "c", multpl = FALSE, scl = TRUE)
tr3R <- geoCorrection(tr3, type = "r", multpl = FALSE, scl = TRUE)

## ----gdistance-11-------------------------------------------------------------
CorrMatrix <- geoCorrection(tr3, type = "r", multpl = TRUE, scl = TRUE)
tr3R <- tr3 * CorrMatrix

## ----gdistance-12-------------------------------------------------------------
sP <- cbind(c(-100, -100, 100), c(50, -50, 50))

## ----gdistance-13-------------------------------------------------------------
costDistance(tr3C, sP)
commuteDistance(tr3R, sP)
rSPDistance(tr3R, sP, sP, theta = 1e-12, totalNet = "total")

## ----gdistance-14-------------------------------------------------------------
origin <- SpatialPoints(cbind(0, 0))
rSPraster <- passage(tr3C, origin, sP[1, ], theta = 3)

## ----figure4,fig=TRUE,height = 3.5, echo=FALSE, fig.cap="Fig. 5. Net passages from origin O to destination sP1."----
par(mar = c(5, 4, 2, 6) + 0.1)
image(rSPraster, main = "rSPraster", col = rev(terrain.colors(255)), xlab = "Longitude (degrees)", ylab = "Latitude (degrees)")
plot(rSPraster, horizontal = FALSE, smallplot = c(.83, .845, .3, .8), legend.only = TRUE, legend.lab = "Net passages")
text(sP[1, 1] + 7, sP[1, 2] - 10, "sP1")
text(10, 0, "O")

## ----gdistance-15-------------------------------------------------------------
r1 <- passage(tr3C, origin, sP[1, ], theta = 1)
r2 <- passage(tr3C, origin, sP[2, ], theta = 1)
rJoint <- min(r1, r2)
rDiv <- max(max(r1, r2) * (1 - min(r1, r2)) - min(r1, r2), 0) 

## ----figure5,fig=TRUE,height = 3.5, echo=FALSE, fig.cap="Fig. 6. Overlapping part of the two routes from origin O to sP1 and sP2 respectively."----
par(mar=c(5, 4, 2, 6) + 0.1)
image(rJoint, main = "rJoint", col = rev(terrain.colors(255)), xlab = "Longitude (degrees)", ylab = "Latitude (degrees)")
plot(rDiv, horizontal = FALSE, smallplot = c(.83, .845, .3, .8), legend.only = TRUE, legend.lab = "Degree of overlap")
text(sP[1, 1] + 7, sP[1, 2] - 10, "sP1")
text(sP[2, 1] + 7, sP[2, 2] - 10, "sP2")
text(10, 0, "O")

## ----figure6,fig=TRUE,height = 3.5, echo=FALSE, fig.cap="Fig. 7. Non-overlapping part of the two routes from origin O to sP1 and sP2 respectively."----
par(mar = c(5, 4, 2, 6) + 0.1)
image(rDiv, main = "rDiv", col = rev(terrain.colors(255)), xlab = "Longitude (degrees)", ylab = "Latitude (degrees)")
plot(rDiv, horizontal = FALSE, smallplot = c(.83, .845, .3, .8), legend.only = TRUE, legend.lab = "Degree of non-overlap")
text(sP[1, 1] + 7, sP[1, 2] - 10, "sP1")
text(sP[2, 1] + 7, sP[2, 2] - 10, "sP2")
text(10, 0, "O")

## ----gdistance-17-------------------------------------------------------------
pathInc(tr3C, origin, sP)

## ----figure7,echo=FALSE,fig=TRUE,height = 4.5, fig.cap="Fig. 8. Tobler's Hiking Function."----
plot(function(x) 6 * exp(-3.5 * abs(x + 0.05)), -1, 1, xlab = expression(Slope ~ italic(m)), ylab = expression(Speed ~ italic(s)~~(m/s)))
lines(cbind(c(0, 0), c(0, 6)), lty = "longdash")

## ----gdistance-18-------------------------------------------------------------
r <- raster(system.file("external/maungawhau.grd", package = "gdistance"))

## ----gdistance-19-------------------------------------------------------------
altDiff <- function(x) { x[2] - x[1] }
hd <- transition(r, altDiff, 8, symm = FALSE)

## ----distance-19--------------------------------------------------------------
slope <- geoCorrection(hd)

## ----gdistance-20-------------------------------------------------------------
adj <- adjacent(r, cells = 1:ncell(r), pairs = TRUE, directions = 8)
speed <- slope
speed[adj] <- 6 * exp(-3.5 * abs(slope[adj] + 0.05))

## ----gdistance-21-------------------------------------------------------------
Conductance <- geoCorrection(speed) 

## ----gdistance-22-------------------------------------------------------------
A <- c(2667670, 6479000)
B <- c(2667800, 6479400)
AtoB <- shortestPath(Conductance, A, B, output = "SpatialLines")
BtoA <- shortestPath(Conductance, B, A, output = "SpatialLines")

## ----fig8plot,include=TRUE, eval=FALSE----------------------------------------
#  plot(r, xlab = "x coordinate (m)", ylab = "y coordinate (m)", legend.lab = "Altitude (masl)")
#  lines(AtoB, col = "red", lwd = 2)
#  lines(BtoA, col = "blue")
#  text(A[1] - 10, A[2] - 10, "A")
#  text(B[1] + 10, B[2] + 10, "B")

## ----fig8, fig=TRUE, echo=FALSE, height=6, fig.cap="Fig. 9. Quickest hiking routes on Maunga Whau between A and B (A to B is red, B to A is blue). (Coordinate system is the New Zealand Map Grid.)"----
par(mar=c(4, 4, 1, 6) + 0.1)
image(r, main = "", col = rev(terrain.colors(255)), xlab="x coordinate (m)", ylab="y coordinate (m)")
plot(r, horizontal = FALSE, smallplot = c(.83, .845, .2, .7), legend.only = TRUE, legend.lab = "Altitude (masl)")
lines(AtoB, col = "red", lwd = 2)
lines(BtoA, col = "blue")
text(A[1] - 10, A[2] - 10, "A")
text(B[1] + 10, B[2] + 10, "B")

## ----gdistance-24-------------------------------------------------------------
Europe <- raster(system.file("external/Europe.grd", package = "gdistance"))

data(genDist)
data(popCoord)

pC <- as.matrix(popCoord[c("x", "y")])

## ----fig10, fig=TRUE,echo=FALSE, height=6, fig.cap="Fig. 10. Map of genotyped populations."----
plot(Europe, main = "", xlab = "Longitude (degrees)", ylab = "Latitude (degrees)", legend = FALSE)
text(pC[, 1], pC[, 2], unlist(popCoord["Population"]), cex = .7)

## ----gdistance-25-------------------------------------------------------------
geoDist <- pointDistance(pC, longlat = TRUE)
geoDist <- as.dist(geoDist)
Europe <- aggregate(Europe, 3)

# Keep only the largest "clump" and remove patches that cannot be reached.
# Having disconnected patches might sometimes cause issues with some of the
# linear algebra calculations.
# Note that this clump code is not robust to other rasters that will need to identify
# the correct clump number
clumps = raster::clump(Europe, directions = 8)
clumps[clumps[] != 1] <- NA
Europe = Europe * clumps

tr <- transition(Europe, mean, directions = 8)
trC <- geoCorrection(tr, "c", scl = TRUE)
trR <- geoCorrection(tr, "r", scl = TRUE)

cosDist <- costDistance(trC, pC)
resDist <- commuteDistance(trR, pC)

cor(genDist, geoDist)
cor(genDist, cosDist)
cor(genDist, resDist)

## ----gdistance-26-------------------------------------------------------------
origin <- unlist(popCoord[22, c("x", "y")])
pI <- pathInc(trC, origin = origin, from = pC, functions = list(overlap))
cor(genDist, pI[[1]])

Try the gdistance package in your browser

Any scripts or data that you put into this service are public.

gdistance documentation built on July 9, 2023, 5:51 p.m.