Nothing
# gee Splus support @(#) ugee.q 4.13 98/01/27
#.First.lib <- function(lib, pkg) library.dynam("gee", pkg, lib)
print.gee <- function(x, digits = NULL, quote = FALSE, prefix = "", ...)
{
if(is.null(digits)) digits <- options()$digits else options(digits =
digits)
cat("\n", x$title)
cat("\n", x$version, "\n")
cat("\nModel:\n")
cat(" Link: ", x$model$link, "\n")
cat(" Variance to Mean Relation:", x$model$varfun, "\n")
if(!is.null(x$model$M))
cat(" Correlation Structure: ", x$model$corstr, ", M =", x$
model$M, "\n")
else cat(" Correlation Structure: ", x$model$corstr, "\n")
cat("\nCall:\n")
dput(x$call) # cat("\nTerms:\n")
### ys <- matrix(rep(as.matrix(x$id, ncol = 1), 5), ncol = 5)
ys <- matrix(rep(matrix(x$id, ncol = 1), 5), ncol = 5)
ys[, 2] <- x$y
ys[, 3] <- x$linear.predictors
ys[, 4] <- x$fitted.values
ys[, 5] <- x$residuals
dimnames(ys) <- list(1:length(x$y), c("ID", "Y", "LP", "fitted",
"Residual")) # cat("\nFitted Values:\n")
cat("\nNumber of observations : ", x$nobs, "\n")
cat("\nMaximum cluster size : ", x$max.id, "\n")
nas <- x$nas
if(any(nas))
cat("\n\nCoefficients: (", sum(nas),
" not defined because of singularities)\n", sep = "")
else cat("\n\nCoefficients:\n")
print(x$coefficients, digits = digits)
cat("\nEstimated Scale Parameter: ", format(round(x$scale, digits)))
cat("\nNumber of Iterations: ", x$iterations)
nc <- min(4, nrow(x$working.correlation))
cat("\n\nWorking Correlation[1:4,1:4]\n")
print(x$working.correlation[1:nc, 1:nc], digits = digits)
cat("\n\nReturned Error Value:\n")
print(x$error)
invisible(x)
}
print.summary.gee <- function(x, digits = NULL, quote = FALSE, prefix = "", ... )
{
if(is.null(digits))
digits <- options()$digits
else options(digits = digits)
cat("\n",x$title)
cat("\n",x$version,"\n")
cat("\nModel:\n")
cat(" Link: ",x$model$link,"\n")
cat(" Variance to Mean Relation:",x$model$varfun,"\n")
if(!is.null(x$model$M))
cat(" Correlation Structure: ",x$model$corstr,", M =",x$model$M,"\n")
else cat(" Correlation Structure: ",x$model$corstr,"\n")
cat("\nCall:\n")
dput(x$call)
cat("\nSummary of Residuals:\n")
print(x$residual.summary, digits = digits)
nas <- x$nas
### if(any(nas))
if(!is.null(nas) && any(nas))
cat("\n\nCoefficients: (", sum(nas),
" not defined because of singularities)\n", sep = "")
else cat("\n\nCoefficients:\n")
print(x$coefficients, digits = digits)
cat("\nEstimated Scale Parameter: ", format(round(x$scale,digits)))
cat("\nNumber of Iterations: ", x$iterations)
cat("\n\nWorking Correlation\n")
print(x$working.correlation,digits=digits)
if(!is.null(x$naive.correlation)) {
cat("\n\nNaive Correlation of Estimates:\n")
print(x$naive.correlation)
}
if(!is.null(x$robust.correlation)) {
cat("\n\nRobust Correlation of Estimates:\n")
print(x$robust.correlation)
}
invisible(x)
}
summary.gee <- function(object, correlation = TRUE, ...)
{
coef <- object$coefficients
resid <- object$residuals
p <- object$rank
if(is.null(p))
p <- sum(!is.na(coef))
if(!p) {
warning("This model has zero rank --- no summary is provided")
return(object)
}
nas <- is.na(coef)
cnames <- names(coef[!nas])
coef <- matrix(rep(coef[!nas], 5), ncol = 5)
dimnames(coef) <- list(cnames, c("Estimate",
"Naive S.E.", "Naive z",
"Robust S.E.", "Robust z"))
rse <- sqrt(diag(object$robust.variance))
nse <- sqrt(diag(object$naive.variance))
coef[,2] <- nse
coef[,3] <- coef[,1]/coef[,2]
coef[,4] <- rse
coef[,5] <- coef[,1]/coef[,4]
summary <- list()
summary$call <- object$call
summary$version <- object$version
summary$nobs <- object$nobs
summary$residual.summary <- quantile(as.vector(object$residuals))
names(summary$residual.summary) <- c("Min", "1Q", "Median", "3Q", "Max")
summary$model<- object$model
summary$title <- object$title
summary$coefficients <- coef
summary$working.correlation <- object$working.correlation
summary$scale <- object$scale
summary$error <- paste("Error code was", object$error)
summary$working.correlation <- object$working.correlation
summary$iterations <- object$iterations
if ( correlation ) {
## rob.var <- object$robust.variance
## nai.var <- object$naive.variance
## summary$robust.correlation <- rob.var /
## outer(sqrt(diag(rob.var)),sqrt(diag(rob.var)))
## dimnames(summary$robust.correlation) <- list(object$xnames,object$xnames)
## summary$naive.correlation <- nai.var /
## outer(sqrt(diag(nai.var)),sqrt(diag(nai.var)))
## dimnames(summary$naive.correlation) <- list(object$xnames,object$xnames)
}
attr(summary,"class") <- "summary.gee"
summary
}
gee <- function(formula = formula(data), id = id, data = parent.frame(),
subset, na.action, R = NULL, b = NULL, tol = 0.001, maxiter = 25,
family = gaussian, corstr = "independence", Mv = 1,
silent = TRUE, contrasts = NULL, scale.fix = FALSE,
scale.value = 1, v4.4compat = FALSE)
{
message("Beginning Cgee S-function, @(#) geeformula.q 4.13 98/01/27")
call <- match.call()
m <- match.call(expand.dots = FALSE)
m$R <- m$b <- m$tol <- m$maxiter <- m$link <- m$varfun <-
m$corstr <- m$Mv <- m$silent <- m$contrasts <-
m$family <- m$scale.fix <- m$scale.value <- m$v4.4compat <- NULL
if(is.null(m$id)) m$id <- as.name("id")
if(!is.null(m$na.action) && m$na.action != "na.omit") {
warning("Only 'na.omit' is implemented for gee\ncontinuing with 'na.action=na.omit'")
m$na.action <- as.name("na.omit")
}
m[[1]] <- as.name("model.frame")
m <- eval(m, parent.frame())
Terms <- attr(m, "terms")
y <- as.matrix(model.extract(m, "response"))
x <- model.matrix(Terms, m, contrasts)
## R addition
Q <- qr(x)
if(Q$rank < ncol(x)) stop("rank-deficient model matrix")
## end of R addition
N <- rep(1, length(y))
if (dim(y)[2]==2) {
N <- as.vector(y %*% c(1,1))
y <- y[,1]
}
else {
if (dim(y)[2]>2)
stop("Only binomial response matrices (2 columns)")
}
offset <- model.extract(m, offset)
id <- model.extract(m, id)
if(is.null(id)) {
stop("Id variable not found")
}
nobs <- nrow(x)
p <- ncol(x)
xnames <- dimnames(x)[[2]]
if(is.null(xnames)) {
xnames <- paste("x", 1:p, sep = "")
dimnames(x) <- list(NULL, xnames)
}
if (is.character(family)) family <- get(family)
if (is.function(family)) family <- family()
if (!is.null(b))
{
beta <- matrix(as.double(b), ncol = 1)
if(nrow(beta) != p) {
stop("Dim beta != ncol(x)")
}
message("user\'s initial regression estimate")
print(beta)
}
else {
message("running glm to get initial regression estimate")
### <tsl> beta <- as.numeric(glm(m, family = family)$coef)
mm <- match.call(expand.dots = FALSE)
mm$R <- mm$b <- mm$tol <- mm$maxiter <- mm$link <- mm$varfun <-mm$corstr <- mm$Mv <- mm$silent <- mm$contrasts <-mm$scale.fix <- mm$scale.value <- mm$id<-NULL
mm[[1]]<-as.name("glm")
beta <- eval(mm, parent.frame())$coef
### </tsl>
print(beta)
beta <- as.numeric(beta)
}
if(length(id) != length(y)) stop("Id and y not same length")
maxclsz <- as.integer(max(unlist(lapply(split(id, id), "length"))))
maxiter <- as.integer(maxiter)
silent <- as.integer(silent)
if(length(offset) <= 1) offset <- rep(0, length(y))
if(length(offset) != length(y)) stop("offset and y not same length")
offset <- as.double(offset)
if(!is.null(R)) {
Rr <- nrow(R)
if(Rr != ncol(R)) stop("R is not square!")
if(Rr < maxclsz) stop("R not big enough to accommodate some clusters.")
}
else {
R <- matrix(as.double(rep(0, maxclsz * maxclsz)), nrow = maxclsz)
}
links <- c("identity", "log", "logit", "inverse", "probit",
"cloglog")
fams <- c("gaussian", "poisson", "binomial", "Gamma", "quasi")
varfuns <- c("constant", "mu", "mu(1-mu)", "mu^2")
corstrs <- c("independence", "fixed", "stat_M_dep", "non_stat_M_dep",
"exchangeable", "AR-M", "unstructured")
linkv <- as.integer(match(c(family$link), links, -1))
famv <- match(family$family, fams, -1)
if(famv < 1) stop("unknown family")
if(famv <= 4) varfunv <- famv
else varfunv <- match(family$varfun, varfuns, -1)
varfunv <- as.integer(varfunv)
corstrv <- as.integer(match(corstr, corstrs, -1))
if(linkv < 1)
stop("unknown link.")
if(varfunv < 1)
stop("unknown varfun.")
if(corstrv < 1)
stop("unknown corstr.")
naivvar <- matrix(rep(0, p * p), nrow = p)
robvar <- matrix(rep(0, p * p), nrow = p)
phi <- as.double(scale.value)
scale.fix <- as.integer(scale.fix)
errstate <- as.integer(1)
tol <- as.double(tol)
Mv <- as.integer(Mv)
maxcl <- as.integer(0)
if(!(is.double(x)))
x <- as.double(x)
if(!(is.double(y)))
y <- as.double(y)
if(!(is.double(id)))
id <- as.double(id)
if(!(is.double(N)))
N <- as.double(N)
modvec <- as.integer(c(linkv, varfunv, corstrv))
if (v4.4compat) compatflag <- 1
else compatflag <- 0
z <- .C(Cgee,
x,
y,
id,
N,
offset,
nobs,
p,
modvec,
Mv,
estb = beta,
nv = naivvar,
rv = robvar,
sc = phi,
wcor = R,
tol,
mc = maxcl,
iter = maxiter,
silent,
err = errstate,
scale.fix,
as.integer(compatflag))
if(z$err != 0)
warning("Cgee had an error (code= ", z$err, "). Results suspect.")
if(min(eigen(z$wcor)$values) < 0) {
warning("Working correlation estimate not positive definite")
z$err <- z$err + 1000
}
fit <- list()
attr(fit, "class") <- c("gee", "glm")
fit$title <- "GEE: GENERALIZED LINEAR MODELS FOR DEPENDENT DATA"
fit$version <- "gee S-function, version 4.13 modified 98/01/27 (1998)"
links <- c("Identity", "Logarithm", "Logit", "Reciprocal", "Probit",
"Cloglog")
varfuns <- c("Gaussian", "Poisson", "Binomial", "Gamma")
corstrs <- c("Independent", "Fixed", "Stationary M-dependent",
"Non-Stationary M-dependent", "Exchangeable", "AR-M",
"Unstructured")
fit$model <- list()
fit$model$link <- links[linkv]
fit$model$varfun <- varfuns[varfunv]
fit$model$corstr <- corstrs[corstrv]
if(!is.na(match(c(corstrv), c(3, 4, 6))))
fit$model$M <- Mv
fit$call <- call
fit$terms <- Terms
fit$formula <- as.vector(attr(Terms, "formula"))
fit$contrasts <- attr(x, "contrasts")
fit$nobs <- nobs
fit$iterations <- z$iter
fit$coefficients <- as.vector(z$estb)
fit$nas <- is.na(fit$coefficients)
names(fit$coefficients) <- xnames
eta <- as.vector(x %*% fit$coefficients)
fit$linear.predictors <- eta
##Rchange
mu <- as.vector(family$linkinv(eta))
##
fit$fitted.values <- mu
fit$residuals <- y - mu
fit$family <- family
fit$y <- as.vector(y)
fit$id <- as.vector(id)
fit$max.id <- z$mc
z$wcor <- matrix(z$wcor, ncol = maxclsz)
fit$working.correlation <- z$wcor
fit$scale <- z$sc
fit$robust.variance <- z$rv
fit$naive.variance <- z$nv
fit$xnames <- xnames
fit$error <- z$err
dimnames(fit$robust.variance) <- list(xnames, xnames)
dimnames(fit$naive.variance) <- list(xnames, xnames)
fit
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.