R/ugee.R

Defines functions gee summary.gee print.summary.gee print.gee

Documented in gee print.gee print.summary.gee summary.gee

# gee Splus support @(#) ugee.q 4.13 98/01/27

#.First.lib <- function(lib, pkg) library.dynam("gee", pkg, lib)

print.gee <- function(x, digits = NULL, quote = FALSE, prefix = "", ...)
{
    if(is.null(digits)) digits <- options()$digits else options(digits =
                                                                digits)
    cat("\n", x$title)
    cat("\n", x$version, "\n")
    cat("\nModel:\n")
    cat(" Link:                     ", x$model$link, "\n")
    cat(" Variance to Mean Relation:", x$model$varfun, "\n")
    if(!is.null(x$model$M))
        cat(" Correlation Structure:    ", x$model$corstr, ", M =", x$
            model$M, "\n")
    else cat(" Correlation Structure:    ", x$model$corstr, "\n")
    cat("\nCall:\n")
    dput(x$call)                        #       cat("\nTerms:\n")
###        ys <- matrix(rep(as.matrix(x$id, ncol = 1), 5), ncol = 5)
    ys <- matrix(rep(matrix(x$id, ncol = 1), 5), ncol = 5)
    ys[, 2] <- x$y
    ys[, 3] <- x$linear.predictors
    ys[, 4] <- x$fitted.values
    ys[, 5] <- x$residuals
    dimnames(ys) <- list(1:length(x$y), c("ID", "Y", "LP", "fitted",
                                          "Residual")) #       cat("\nFitted Values:\n")
    cat("\nNumber of observations : ", x$nobs, "\n")
    cat("\nMaximum cluster size   : ", x$max.id, "\n")
    nas <- x$nas
    if(any(nas))
        cat("\n\nCoefficients: (", sum(nas),
            " not defined because of singularities)\n", sep = "")
    else cat("\n\nCoefficients:\n")
    print(x$coefficients, digits = digits)
    cat("\nEstimated Scale Parameter: ", format(round(x$scale, digits)))
    cat("\nNumber of Iterations: ", x$iterations)
    nc <- min(4, nrow(x$working.correlation))
    cat("\n\nWorking Correlation[1:4,1:4]\n")
    print(x$working.correlation[1:nc, 1:nc], digits = digits)
    cat("\n\nReturned Error Value:\n")
    print(x$error)
    invisible(x)
}

print.summary.gee <- function(x, digits = NULL, quote = FALSE, prefix = "", ... )
{
    if(is.null(digits))
        digits <- options()$digits
    else options(digits = digits)
    cat("\n",x$title)
    cat("\n",x$version,"\n")
    cat("\nModel:\n")
    cat(" Link:                     ",x$model$link,"\n")
    cat(" Variance to Mean Relation:",x$model$varfun,"\n")
    if(!is.null(x$model$M))
        cat(" Correlation Structure:    ",x$model$corstr,", M =",x$model$M,"\n")
    else 	cat(" Correlation Structure:    ",x$model$corstr,"\n")
    cat("\nCall:\n")
    dput(x$call)
    cat("\nSummary of Residuals:\n")
    print(x$residual.summary, digits = digits)
    nas <- x$nas
###	if(any(nas))
    if(!is.null(nas) && any(nas))
        cat("\n\nCoefficients: (", sum(nas),
            " not defined because of singularities)\n", sep = "")
    else cat("\n\nCoefficients:\n")
    print(x$coefficients, digits = digits)
    cat("\nEstimated Scale Parameter: ", format(round(x$scale,digits)))
    cat("\nNumber of Iterations: ", x$iterations)
    cat("\n\nWorking Correlation\n")
    print(x$working.correlation,digits=digits)
    if(!is.null(x$naive.correlation)) {
        cat("\n\nNaive Correlation of Estimates:\n")
        print(x$naive.correlation)
    }
    if(!is.null(x$robust.correlation)) {
        cat("\n\nRobust Correlation of Estimates:\n")
        print(x$robust.correlation)
    }
    invisible(x)
}
summary.gee <- function(object, correlation = TRUE, ...)
{
    coef <- object$coefficients
    resid <- object$residuals
    p <- object$rank
    if(is.null(p))
        p <- sum(!is.na(coef))
    if(!p) {
        warning("This model has zero rank --- no summary is provided")
        return(object)
    }
    nas <- is.na(coef)
    cnames <- names(coef[!nas])
    coef <- matrix(rep(coef[!nas], 5), ncol = 5)
    dimnames(coef) <- list(cnames, c("Estimate",
                                     "Naive S.E.",  "Naive z",
                                     "Robust S.E.", "Robust z"))
    rse <- sqrt(diag(object$robust.variance))
    nse <- sqrt(diag(object$naive.variance))
    coef[,2] <- nse
    coef[,3] <- coef[,1]/coef[,2]
    coef[,4] <- rse
    coef[,5] <- coef[,1]/coef[,4]
    summary <- list()
    summary$call <- object$call
    summary$version <- object$version
    summary$nobs <- object$nobs
    summary$residual.summary <- quantile(as.vector(object$residuals))
    names(summary$residual.summary) <- c("Min", "1Q", "Median", "3Q", "Max")
    summary$model<- object$model
    summary$title <- object$title
    summary$coefficients <- coef
    summary$working.correlation <- object$working.correlation
    summary$scale <- object$scale
    summary$error <- paste("Error code was", object$error)
    summary$working.correlation <- object$working.correlation
    summary$iterations <- object$iterations
    if ( correlation ) {
        ##	rob.var <- object$robust.variance
        ##	nai.var <- object$naive.variance
        ##	summary$robust.correlation <- rob.var /
        ##	outer(sqrt(diag(rob.var)),sqrt(diag(rob.var)))
        ##	dimnames(summary$robust.correlation) <- list(object$xnames,object$xnames)
        ##	summary$naive.correlation <- nai.var /
        ##	outer(sqrt(diag(nai.var)),sqrt(diag(nai.var)))
        ##	dimnames(summary$naive.correlation) <- list(object$xnames,object$xnames)
    }
    attr(summary,"class") <- "summary.gee"
    summary
}
gee <- function(formula = formula(data), id = id, data = parent.frame(),
                subset, na.action, R = NULL, b = NULL, tol = 0.001, maxiter = 25,
                family = gaussian, corstr = "independence", Mv = 1,
                silent = TRUE, contrasts = NULL, scale.fix = FALSE,
                scale.value = 1, v4.4compat = FALSE)
{
    message("Beginning Cgee S-function, @(#) geeformula.q 4.13 98/01/27")
    call <- match.call()
    m <- match.call(expand.dots = FALSE)
    m$R <- m$b <- m$tol <- m$maxiter <- m$link <- m$varfun <-
        m$corstr <- m$Mv <- m$silent <- m$contrasts <-
            m$family <- m$scale.fix <- m$scale.value <- m$v4.4compat <- NULL
    if(is.null(m$id)) m$id <- as.name("id")
    if(!is.null(m$na.action) && m$na.action != "na.omit") {
        warning("Only 'na.omit' is implemented for gee\ncontinuing with 'na.action=na.omit'")
        m$na.action <- as.name("na.omit")
    }
    m[[1]] <- as.name("model.frame")
    m <- eval(m, parent.frame())
    Terms <- attr(m, "terms")
    y <- as.matrix(model.extract(m, "response"))
    x <- model.matrix(Terms, m, contrasts)
    ## R addition
    Q <- qr(x)
    if(Q$rank < ncol(x)) stop("rank-deficient model matrix")
    ## end of R addition
    N <- rep(1, length(y))
    if (dim(y)[2]==2) {
        N <- as.vector(y %*% c(1,1))
        y <- y[,1]
    }
    else {
        if (dim(y)[2]>2)
            stop("Only binomial response matrices (2 columns)")
    }
    offset <- model.extract(m, offset)
    id <- model.extract(m, id)
    if(is.null(id)) {
        stop("Id variable not found")
    }
    nobs <- nrow(x)
    p <- ncol(x)
    xnames <- dimnames(x)[[2]]
    if(is.null(xnames)) {
        xnames <- paste("x", 1:p, sep = "")
        dimnames(x) <- list(NULL, xnames)
    }
    if (is.character(family)) family <- get(family)
    if (is.function(family)) family <- family()
    if (!is.null(b))
    {
        beta <- matrix(as.double(b), ncol = 1)
        if(nrow(beta) != p) {
            stop("Dim beta != ncol(x)")
        }
        message("user\'s initial regression estimate")
        print(beta)
    }
    else {
        message("running glm to get initial regression estimate")
### <tsl>	beta <- as.numeric(glm(m, family = family)$coef)
        mm <- match.call(expand.dots = FALSE)
        mm$R <- mm$b <- mm$tol <- mm$maxiter <- mm$link <- mm$varfun <-mm$corstr <- mm$Mv <- mm$silent <- mm$contrasts <-mm$scale.fix <- mm$scale.value <- mm$id<-NULL
        mm[[1]]<-as.name("glm")
        beta <- eval(mm, parent.frame())$coef
### </tsl>
        print(beta)
        beta <- as.numeric(beta)
    }
    if(length(id) != length(y))  stop("Id and y not same length")
    maxclsz <- as.integer(max(unlist(lapply(split(id, id), "length"))))
    maxiter <- as.integer(maxiter)
    silent <- as.integer(silent)
    if(length(offset) <= 1)  offset <- rep(0, length(y))
    if(length(offset) != length(y)) stop("offset and y not same length")
    offset <- as.double(offset)
    if(!is.null(R)) {
        Rr <- nrow(R)
        if(Rr != ncol(R)) stop("R is not square!")
        if(Rr < maxclsz) stop("R not big enough to accommodate some clusters.")
    }
    else {
        R <- matrix(as.double(rep(0, maxclsz * maxclsz)), nrow = maxclsz)
    }
    links <- c("identity", "log", "logit", "inverse", "probit",
               "cloglog")
    fams <- c("gaussian", "poisson", "binomial", "Gamma", "quasi")
    varfuns <- c("constant", "mu", "mu(1-mu)", "mu^2")
    corstrs <- c("independence", "fixed", "stat_M_dep", "non_stat_M_dep",
                 "exchangeable", "AR-M", "unstructured")
    linkv <- as.integer(match(c(family$link), links, -1))
    famv <- match(family$family, fams, -1)
    if(famv < 1) stop("unknown family")
    if(famv <= 4) varfunv <- famv
    else varfunv <- match(family$varfun, varfuns, -1)
    varfunv <- as.integer(varfunv)
    corstrv <- as.integer(match(corstr, corstrs, -1))
    if(linkv < 1)
        stop("unknown link.")
    if(varfunv < 1)
        stop("unknown varfun.")
    if(corstrv < 1)
        stop("unknown corstr.")
    naivvar <- matrix(rep(0, p * p), nrow = p)
    robvar <- matrix(rep(0, p * p), nrow = p)
    phi <- as.double(scale.value)
    scale.fix <- as.integer(scale.fix)
    errstate <- as.integer(1)
    tol <- as.double(tol)
    Mv <- as.integer(Mv)
    maxcl <- as.integer(0)
    if(!(is.double(x)))
        x <- as.double(x)
    if(!(is.double(y)))
        y <- as.double(y)
    if(!(is.double(id)))
        id <- as.double(id)
    if(!(is.double(N)))
        N <- as.double(N)
    modvec <- as.integer(c(linkv, varfunv, corstrv))
    if (v4.4compat) compatflag <- 1
    else compatflag <- 0
    z <- .C(Cgee,
            x,
            y,
            id,
            N,
            offset,
            nobs,
            p,
            modvec,
            Mv,
            estb = beta,
            nv = naivvar,
            rv = robvar,
            sc = phi,
            wcor = R,
            tol,
            mc = maxcl,
            iter = maxiter,
            silent,
            err = errstate,
            scale.fix,
            as.integer(compatflag))
    if(z$err != 0)
        warning("Cgee had an error (code= ", z$err, ").  Results suspect.")
    if(min(eigen(z$wcor)$values) < 0) {
        warning("Working correlation estimate not positive definite")
        z$err <- z$err + 1000
    }
    fit <- list()
    attr(fit, "class") <- c("gee", "glm")
    fit$title <- "GEE:  GENERALIZED LINEAR MODELS FOR DEPENDENT DATA"
    fit$version <- "gee S-function, version 4.13 modified 98/01/27 (1998)"
    links <- c("Identity", "Logarithm", "Logit", "Reciprocal", "Probit",
               "Cloglog")
    varfuns <- c("Gaussian", "Poisson", "Binomial", "Gamma")
    corstrs <- c("Independent", "Fixed", "Stationary M-dependent",
                 "Non-Stationary M-dependent", "Exchangeable", "AR-M",
                 "Unstructured")
    fit$model <- list()
    fit$model$link <- links[linkv]
    fit$model$varfun <- varfuns[varfunv]
    fit$model$corstr <- corstrs[corstrv]
    if(!is.na(match(c(corstrv), c(3, 4, 6))))
        fit$model$M <- Mv
    fit$call <- call
    fit$terms <- Terms
    fit$formula <- as.vector(attr(Terms, "formula"))
    fit$contrasts <- attr(x, "contrasts")
    fit$nobs <- nobs
    fit$iterations <- z$iter
    fit$coefficients <- as.vector(z$estb)
    fit$nas <- is.na(fit$coefficients)
    names(fit$coefficients) <- xnames
    eta <- as.vector(x %*% fit$coefficients)
    fit$linear.predictors <- eta
    ##Rchange
    mu <- as.vector(family$linkinv(eta))
    ##
    fit$fitted.values <- mu
    fit$residuals <- y - mu
    fit$family <- family
    fit$y <- as.vector(y)
    fit$id <- as.vector(id)
    fit$max.id <- z$mc
    z$wcor <- matrix(z$wcor, ncol = maxclsz)
    fit$working.correlation <- z$wcor
    fit$scale <- z$sc
    fit$robust.variance <- z$rv
    fit$naive.variance <- z$nv
    fit$xnames <- xnames
    fit$error <- z$err
    dimnames(fit$robust.variance) <- list(xnames, xnames)
    dimnames(fit$naive.variance) <- list(xnames, xnames)
    fit
}

Try the gee package in your browser

Any scripts or data that you put into this service are public.

gee documentation built on May 29, 2024, 12:14 p.m.