Nothing
getfam <- function(family){
if(is.character(family)){
family <- get(family, mode = "function", envir = parent.frame(2))
}
if(is.function(family)){
family <- family()
return(family)
}else if(inherits(family, "family")){
return(family)
}else if(is.list(family)){
if(length(match(names(family), c("LinkFun", "VarFun", "InvLink", "InvLinkDeriv"))) == 4){
famname <- "custom"
LinkFun <- family$LinkFun
InvLink <- family$InvLink
VarFun <- family$VarFun
InvLinkDeriv <- family$InvLinkDeriv
}else{
famname <- "custom"
LinkFun <- family[[1]]
VarFun <- family[[2]]
InvLink <- family[[3]]
InvLinkDeriv <- family[[4]]
}
FunList <- list("family"= famname, "LinkFun" = LinkFun, "VarFun" = VarFun, "InvLink" = InvLink, "InvLinkDeriv" = InvLinkDeriv)
return(FunList)
}else{
stop("problem with family argument: should be string, family object, or list of functions")
}
}
### Get a block diagonal matrix. Each block has dimension corresponding to
### each cluster size. By default, each block is just a matrix filled with ones.
getBlockDiag <- function(len, xvec=NULL){
K <- length(len)
if(is.null(xvec)){
xvec <- rep.int(1, sum(len^2))
}
row.vec <- col.vec <- vector("numeric", sum(len^2))
add.vec <- cumsum(len) - len
if(K == 1){
index <- c(0, sum(len^2))
}else{
index <- c(0, (cumsum(len^2) -len^2)[2:K], sum(len^2))
}
for(i in 1:K){
row.vec[(index[i] + 1):(index[i+1])] <- rep.int( (1:len[i]) + add.vec[i], len[i])
col.vec[(index[i] + 1):(index[i+1])] <- rep( (1:len[i]) + add.vec[i], each=len[i])
}
BlockDiag <- sparseMatrix(i = row.vec, j = col.vec, x = xvec)
if(!is.null(xvec)){
testsymm <- abs(sum(skewpart(BlockDiag)))
if(testsymm != 0) {
warning("Correlation matrix is not computed to be exactly symmetric. Taking only the symmetric part.")
}
}
return(list(BDiag = symmpart(BlockDiag), row.vec =row.vec, col.vec=col.vec))
}
### Check some conditions on the FIXED correlation structure.
checkFixedMat <- function(corr.mat, len){
if(is.null(corr.mat)){
stop("corr.mat must be specified if using fixed correlation structure")
}
if(dim(corr.mat)[1] < max(len)){
stop("Dimensions of corr.mat must be at least as large as largest cluster")
}
if(!isSymmetric(corr.mat)){
stop("corr.mat must be symmetric")
}
if(determinant(corr.mat, logarithm=T)$modulus == -Inf){
stop("supplied correlation matrix is not invertible.")
}
return(corr.mat[1:max(len), 1:max(len)])
}
### fitted function for geem object
fitted.geem <- function(object, ...){
#InvLink <- object$FunList$InvLink
InvLink <- object$FunList[[if(object$FunList$family == "custom") "InvLink" else "linkinv"]]
return(InvLink(object$eta))
}
predict.geem <- function(object, newdata = NULL,...){
coefs <- object$beta
if(is.null(newdata)){
return(as.vector(object$X %*% object$beta))
}else{
if(dim(newdata)[2] != length(coefs)){warning("New observations must have the same number of rows as coefficients in the model")}
return(as.vector(newdata %*% object$beta))
}
}
coef.geem <- function(object, ...){
coefs <- object$beta
names(coefs) <- object$coefnames
return(coefs)
}
family.geem <- function(object,...){
return(object$FunList)
}
dummyrows <- function(formula, dat, incomp, maxwave, wavespl, idspl){
missing <- missid <- misswave <- rep(0, sum(maxwave))
index <- 1
for(i in 1:length(wavespl)){
wa <- wavespl[[i]]
if(incomp[i]==1){
index <- index+1
for(j in 2:length(wa)){
wdiff <- wa[j] - wa[j-1] -1
if(wdiff > 0){
missing[index:(index+wdiff-1)] <- (wa[j-1]+1):(wa[j]-1)
missid[index:(index+wdiff-1)] <- idspl[[i]][1]
}
index <- index+wdiff+1
}
}else{
index <- index+length(wa)
}
}
dat2 <- as.data.frame(matrix(nrow=sum(maxwave), ncol=dim(dat)[2]))
colnames(dat2) <- colnames(dat)
dat2[missing==0,] <- dat
dat2$id[missing > 0] <- missid[missing>0]
dat2$weights[missing > 0] <- 0
dat2$waves[missing > 0] <- missing[missing > 0]
NAcols <- which(!is.element(names(dat2), c("id", "waves", "weights")))
for(i in NAcols){
dat2[missing>0, i] <- median(dat2[,i], na.rm=TRUE)
}
retdat <- model.frame(formula, dat2, na.action=na.pass)
retdat$id <- dat2$id
retdat$weights <- dat2$weights
retdat$waves <- dat2$waves
return(retdat)
}
fillMatList <- function(real.sizes){
}
model.matrix.geem <- function(object, ...){
return(model.matrix(object$formula, data=model.frame(object)))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.