Nothing
.area.between.curves <-
function(x, f1, f2, xrange=c(0,1))
{
a<-0.0;
for(i in 1:length(x)) {
if(x[i]>=xrange[1] & x[i]<=xrange[2]) {
if(i==1) {
lhs<-0
} else if(x[i-1]<xrange[1]) {
lhs<-xrange[1]
} else lhs<-x[i-1];
if(i==length(x)) {
rhs<-x[i]
} else if(x[i+1]>xrange[2]) {
rhs<-xrange[2];
} else rhs<-x[i+1];
a<-a+(f2[i]-f1[i])*(rhs-lhs)/2;
} else if(i!=1) if(x[i-1]>=xrange[1] & x[i-1]<=xrange[2]) {
y1<-f1[i-1]+(f1[i]-f1[i-1])*(xrange[2]-x[i-1])/(x[i]-x[i-1])
y2<-f2[i-1]+(f2[i]-f2[i-1])*(xrange[2]-x[i-1])/(x[i]-x[i-1])
a<-a+(y2-y1)*(xrange[2]-x[i-1])/2;
} else if(i!=length(x)) if(x[i+1]>=xrange[1] & x[i+1]<=xrange[2]) {
y1<-f1[i]+(f1[i+1]-f1[i])*(xrange[1]-x[i])/(x[i+1]-x[i])
y2<-f2[i]+(f2[i+1]-f2[i])*(xrange[1]-x[i])/(x[i+1]-x[i])
a<-a+(y2-y1)*(x[i+1]-xrange[1])/2;
}
}
return(a)
}
disparity <- function(phy=NULL, data, index=c("avg.sq", "avg.manhattan", "num.states")){
if(!is.null(phy)){
if (!"phylo"%in%class(phy)) stop("Supply 'phy' as a 'phylo' object")
td<-treedata(phy, data)
phy=td$phy
data=td$data
desc=.cache.descendants(phy)$tips
nb.tip <- length(td$phy$tip.label)
nb.node <- td$phy$Nnode
result<-numeric()
for(i in 1:nb.node) {
l<-desc[[nb.tip+i]]
d<-td$data[phy$tip.label[l],]
result[i]<-.disparity(d, index)
}
names(result)=nb.tip+1:nb.node
return(result)
} else {
return(.disparity(data, index))
}
}
.disparity <- function(data, index=c("avg.sq", "avg.manhattan", "num.states")){
disp=match.arg(index, c("avg.sq", "avg.manhattan", "num.states"))
if(disp=="avg.sq") {
d<-dist(data, method="euclidean")^2
r<-mean(d)
}
else if(disp=="avg.manhattan") {
d<-dist(data, method="manhattan")
r<-mean(d)
}
else if(disp=="num.states") {
f<-function(x) length(unique(x))
if(!is.null(dim(data))) {
d<-apply(data, 2, f)
r<-mean(d)
} else {
r<-f(data)
}
}
else r<-0;
return(r)
}
ratematrix=function(phy, dat){
.ic.sigma(phy=phy, data=dat)
}
.ic.sigma <-
function(phy, data)
{
td<-treedata(phy, data, sort=TRUE)
f<-function(x) pic(x, td$phy)
ic<-apply(td$data, 2, function(x) {
names(x)=rownames(td$data)
f(x)
})
r<-crossprod(ic, ic)/nrow(ic)
return(r)
}
.dtt <-
function(phy, data, disp=c("avg.sq", "avg.manhattan", "num.states")){
disp=match.arg(disp, c("avg.sq", "avg.manhattan", "num.states"))
phy$node.label<-NULL
td<-treedata(phy, data)
phy2<-td$phy
phy<-new2old.phylo(td$phy)
result<-numeric()
node.depth<-branching.times(phy2);
stem.depth<-numeric();
stem.depth[1]<-node.depth[1];
for(i in 2:phy2$Nnode) {
anc<-which(as.numeric(phy$edge[,2])==-i)
stem.depth[i]<-node.depth[names(node.depth)==phy2$edge[anc,1]]
}
ltt<-sort(node.depth, decreasing=TRUE)
node.depth<-node.depth/max(ltt);
stem.depth<-stem.depth/max(ltt);
ltt<-ltt/max(ltt);
if(length(dim(td$data))==2) {
d<-disparity(phy2, td$data, index=disp)
result[1]<-d[1]
for(i in 2:length(ltt)) {
x<-d[stem.depth>=ltt[i-1]&node.depth<ltt[i-1]]
if(length(x)==0) result[i]=0
else result[i]<-mean(x);
}
result[length(ltt)+1]<-0;
if(result[1]>0)
result<-result/result[1];
} else {
if(length(dim(td$data))!=3)
stop("Error in data");
for(i in 1:dim(td$data)[3]) {
pp<-as.matrix(td$data[,,i])
d<-disparity(phy2, pp, index=disp)
y<-numeric()
y[1]<-d[1]
for(j in 2:length(ltt)) {
x<-d[stem.depth>=ltt[j-1]&node.depth<ltt[j-1]]
if(length(x)==0) y[j]=0
else y[j]<-mean(x);
}
y[length(ltt)+1]<-0;
if(y[1]>0)
y<-y/y[1];
result<-cbind(result, y)
}
}
return(result);
}
.dtt.polygon=function(mat, t, alpha=0.05){
k=nrow(mat)
dd=c(alpha/2, 1-alpha/2)
tmp=sapply(1:k, function(x) quantile(mat[x,], probs=dd, na.rm=TRUE))
yy=c(tmp[1,], rev(tmp[2,]))
xx=c(t, rev(t))
return(cbind(x=xx, y=yy))
}
.CI=function(CI=0.95){
prob = (1 - CI)/2
return(c(prob, 1-prob))
}
dtt<-function(phy, data, index=c("avg.sq", "avg.manhattan", "num.states"), mdi.range=c(0,1), nsim=0, CI=0.95, plot=TRUE, calculateMDIp=F){
disp=match.arg(index, c("avg.sq", "avg.manhattan", "num.states"))
td<-treedata(phy, data)
dtt.data<-.dtt(td$phy, td$data, disp=disp)
ltt<-sort(branching.times(td$phy), decreasing=TRUE)
ltt<-c(0, (max(ltt)-ltt)/max(ltt));
if(disp=="num.states") {
warning("Simulations and MDI calculation not currently supported for dtt with discrete traits")
nsim=0
ylim=c(range(pretty(dtt.data)))
dtt.sims=NULL
MDI=NULL
} else {
s<-ratematrix(td$phy, td$data)
dtt.sims=NULL
MDI=NULL
ylim=c(range(pretty(dtt.data)))
if(is.numeric(nsim)){
if(nsim>0){
sims<-sim.char(td$phy, s, nsim)
dtt.sims<-.dtt(td$phy, sims)
mean.sims<-apply(dtt.sims, 1, mean)
median.sims<-apply(dtt.sims, 1, median)
MDI<-unname(.area.between.curves(ltt, apply(dtt.sims, 1, median), dtt.data, sort(mdi.range)))
names(MDI)=disp
colnames(dtt.sims)=NULL
yy=range(dtt.sims)
ylim=range(c(ylim, yy))
}
}
}
if(plot){
plot(ltt, dtt.data, xlab="relative time", ylab="disparity", ylim=ylim, bty="n", type="n")
if(!is.null(dtt.sims)){
poly=.dtt.polygon(dtt.sims, ltt, alpha=1-CI)
polygon(poly[,"x"], poly[,"y"], col=.transparency("lightgray", 0.5), border=NA)
lines(ltt, median.sims, lty=2)
}
lines(ltt, dtt.data, type="l", lwd=2)
}
res=list(dtt=dtt.data, times=ltt, sim=dtt.sims, MDI=MDI)
drp=sapply(res, function(x) is.null(x))
if(any(drp)) res=res[-which(drp)]
if(calculateMDIp) {
pVal<-getMDIp(res)
res<-c(res, MDIpVal=pVal)
}
return(res)
}
getMDIp<-function(dttRes) {
foo<-function(x) {
return(.area.between.curves(x= dttRes$times, f1=x, f2=dttRes$dtt))
}
mdis<-apply(dttRes$sim,2,foo)
pVal<-length(which(mdis>=0))/length(mdis)
return(pVal)
}
getPars<-function (bt, xx, model, Q, tree, tol, m, liks = TRUE, pi, args = list())
{
if (!is.null(args$pi))
args$pi <- NULL
args <- c(list(tree = bt, x = xx, model = model, fixedQ = Q,
output.liks = liks, pi = pi), args)
obj <- do.call(fitMk, args)
N <- length(bt$tip.label)
II <- obj$index.matrix + 1
lvls <- obj$states
if (liks) {
L <- obj$lik.anc
rownames(L) <- N + 1:nrow(L)
if (!is.binary(tree)) {
ancNames <- matchNodes(tree, bt)
L <- L[as.character(ancNames[, 2]), ]
rownames(L) <- ancNames[, 1]
}
L <- rbind(xx, L)
rownames(L)[1:N] <- 1:N
}
else L <- NULL
Q <- matrix(c(0, obj$rates)[II], m, m, dimnames = list(lvls,
lvls))
if (any(rowSums(Q, na.rm = TRUE) < tol)) {
message(paste("\nWarning: some rows of Q not numerically distinct from 0; setting to",
tol, "\n"))
ii <- which(rowSums(Q, na.rm = TRUE) < tol)
for (i in 1:length(ii)) Q[ii[i], setdiff(1:ncol(Q), ii[i])] <- tol/(ncol(Q) -
1)
}
diag(Q) <- -rowSums(Q, na.rm = TRUE)
return(list(Q = Q, L = L, loglik = logLik(obj)))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.