Nothing
#' @include forest.R
#' @include stopIfNotConsistent.R
## mtc.result class methods
print.mtc.result <- function(x, ...) {
cat("MTC ", x[['model']][['type']], " results: ", x[['model']][['description']], sep="")
print(x[['samples']])
}
summary.mtc.result <- function(object, ...) {
scale.log <- if (ll.call('scale.log', object[['model']])) 'Log ' else ''
scale.name <- ll.call('scale.name', object[['model']])
rval <- list('measure'=paste0(scale.log, scale.name),
'summaries'=summary(object[['samples']]),
'DIC'=unlist(object[['deviance']][c('Dbar', 'pD', 'DIC', 'data points')]),
'regressor'=object[['model']][['regressor']],
'covariate'=object[['covariate']])
class(rval) <- 'summary.mtc.result'
rval
}
print.summary.mtc.result <- function(x, ...) {
cat(paste("\nResults on the", x[['measure']], "scale\n"))
print(x[['summaries']])
if (!is.null(x[['DIC']])) {
cat("-- Model fit (residual deviance):\n\n")
dic <- x[['DIC']]
print(dic[c('Dbar', 'pD', 'DIC')])
cat(paste0("\n", dic['data points'], " data points, ratio ",
format(dic['Dbar'] / dic['data points'], digits=4),
", I^2 = ", format(100 * max(0, min(1, (dic['Dbar'] - dic['data points'] + 1)/dic['Dbar'])), digits=1),
"%\n"))
}
if (!is.null(x[['regressor']])) {
cat("\n-- Regression settings:\n\n")
r <- x[['regressor']]
if (!is.null(x[['regressor']][['classes']])) {
cat(paste0("Regression on \"", r[['variable']], "\", ", r[['coefficient']], " coefficients, by class\n"))
} else {
cat(paste0("Regression on \"", r[['variable']], "\", ", r[['coefficient']], " coefficients, \"", r[['control']], "\" as control\n"))
}
if (!is.null(x[['covariate']])) {
cat(paste0("Values at ", r[['variable']], " = ", x[['covariate']], "\n"))
} else {
cat(paste0("Input standardized: x' = (", r[['variable']], " - ", format(r[['center']], digits=getOption("digits")), ") / ", format(r[['scale']], digits=getOption("digits")), "\n"))
cat(paste0("Estimates at the centering value: ", r[['variable']], " = ", format(r[['center']], digits=getOption("digits")), "\n"))
}
}
cat("\n")
}
plot.mtc.result <- function(x, ...) {
plot(x[['samples']], ...)
}
forest.mtc.result <- function(x, use.description=FALSE, ...) {
stopIfNotConsistent(x, "forest.mtc.result")
varnames <- colnames(x[['samples']][[1]])
samples <- as.matrix(x[['samples']][, grep("^d\\.", varnames)])
stats <- t(apply(samples, 2, quantile, probs=c(0.025, 0.5, 0.975)))
model <- x[['model']]
network <- model[['network']]
comps <- extract.comparisons(varnames)
groups <- comps[,1]
group.names <- unique(groups)
group.labels <- paste("Compared with", if (use.description) treatment.id.to.description(network, group.names) else group.names)
names(group.labels) <- group.names
params <- list(...)
data <- data.frame(
id=if (use.description) treatment.id.to.description(network, comps[,2]) else comps[,2],
pe=stats[,2], ci.l=stats[,1], ci.u=stats[,3],
group=groups, style="normal")
blobbogram(data,
columns=c(), column.labels=c(),
id.label="",
ci.label=paste(ll.call('scale.name', model), "(95% CrI)"),
log.scale=ll.call('scale.log', model),
grouped=TRUE, group.labels=group.labels,
...)
}
as.mcmc.list.mtc.result <- function(x, ...) {
x[['samples']]
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.