tests/testthat/test-unit-allpairs.R

# Test calculation of all-pairs MLE estimates (needed for priors, starting values)
context("rel.mle.[ab|re]")

test_that("a single pair returns a one-row matrix", {
  data <- data.frame(treatment=c("A", "B"), mean=c(1.0, 2.0), std.err=c(0.5/4, 0.5/4))
  model <- list("likelihood"="normal", "link"="identity")
  pairs <- data.frame(t1=data$treatment[1], t2=data$treatment[2])
  expected <- matrix(c('mean'=1.0, 'sd'=sqrt(2*0.125^2)), nrow=1, ncol=2)
  colnames(expected) <- c('mean', 'sd')
  expect_that(rel.mle.ab(data, model, pairs), equals(expected))
})

test_that("two pairs return a two-row matrix", {
  data <- data.frame(treatment=c("A", "B", "C"), mean=c(1.0, 2.0, 2.5), std.err=c(0.5/4, 0.5/4, 1.0/4), stringsAsFactors=T)
  model <- list("likelihood"="normal", "link"="identity")
  ts <- data$treatment
  pairs <- data.frame(t1=forcats::fct_c(ts[1], ts[1]), t2=forcats::fct_c(ts[2], ts[3]))
  expected <- matrix(c(1.0, sqrt(2*0.125^2), 1.5, sqrt(0.125^2 + 0.25^2)), ncol=2, byrow=TRUE)
  colnames(expected) <- c('mean', 'sd')
  expect_that(rel.mle.ab(data, model, pairs), equals(expected))
})

test_that("calculating pairs for relative effect data transforms the mvnorm", {
  data <- read.table(textConnection("
study  treatment  diff  std.err
s07    A          NA    0.50
s07    B          -2.3  0.72
s07    D          -0.9  0.69"), header=T, stringsAsFactors=T)
  ts <- data$treatment
  pairs <- data.frame(t1=forcats::fct_c(ts[3], ts[3]), t2=forcats::fct_c(ts[1], ts[2]))
  expected <- matrix(c(0.9, 0.69, -1.4, sqrt(0.72^2+0.69^2-2*0.50^2)), ncol=2, byrow=TRUE)
  colnames(expected) <- c('mean', 'sd')
  expect_that(rel.mle.re(data, pairs), equals(expected))
})

test_that("calculating pairs for relative effect data handles 1-pair case", {
  data <- read.table(textConnection("
study  treatment  diff  std.err
s07    A          NA    0.50
s07    B          -2.3  0.72
s07    D          -0.9  0.69"), header=T, stringsAsFactors=T)
  ts <- data$treatment
  pairs <- data.frame(t1=forcats::fct_c(ts[3], ts[3]), t2=forcats::fct_c(ts[1], ts[2]))
  expected <- matrix(c(0.9, 0.69, -1.4, sqrt(0.72^2+0.69^2-2*0.50^2)), ncol=2, byrow=TRUE)
  colnames(expected) <- c('mean', 'sd')
  expect_that(rel.mle.re(data, pairs), equals(expected))
})

test_that("calculating pairs for relative effect data handles missing treatments", {
  data <- read.table(textConnection("
study  treatment  diff  std.err
s07    A          NA    0.50
s07    B          -2.3  0.72
s07    D          -0.9  0.69
s08    C          NA    0.3"), header=T, stringsAsFactors=T)
  ts <- data$treatment
  pairs <- data.frame(t1=ts[3], t2=ts[2])
  expected <- matrix(c(-1.4, sqrt(0.72^2+0.69^2-2*0.50^2)), ncol=2, byrow=TRUE)
  colnames(expected) <- c('mean', 'sd')
  expect_that(rel.mle.re(data[data$study=="s07",], pairs), equals(expected))
})

test_that("guess.scale handles relative effect data", {
  data <- read.table(textConnection("
study  treatment  diff  std.err
s07    A          NA    0.50
s07    B          -2.3  0.72
s07    D          -0.9  0.69"), header=T, stringsAsFactors=T)
  network <- mtc.network(data.re=data)

  model <- list(
    network = network,
    likelihood = 'normal',
    link = 'identity')
  expect_that(guess.scale(model), equals(2.3))
})

test_that("guess.scale not confused by unrealized study levels", {
  network <- list(treatments=data.frame(id=as.factor(c("A", "B"))), data.ab = data.frame(
    study=factor(c("1", "1"), levels=c("1", "2")), treatment=as.factor(c("A", "B")), responders=c(1, 3), sampleSize=c(10, 10)))
  expect_that(guess.scale(list(network=network, likelihood='binom', link='logit')), equals(1.083687, tolerance=1e-6))

  network <- list(treatments=data.frame(id=as.factor(c("A", "B"))), data.re = data.frame(
    study=factor(c("1", "1"), levels=c("1", "2")), treatment=as.factor(c("A", "B")), diff=c(NA, 1), std.err=c(NA, 1)))
  expect_that(guess.scale(list(network=network, likelihood='binom', link='logit')), equals(1))
})

Try the gemtc package in your browser

Any scripts or data that you put into this service are public.

gemtc documentation built on July 9, 2023, 5:33 p.m.