parcorBijk: Block version of generalized partial correlation coefficients...

parcorBijkR Documentation

Block version of generalized partial correlation coefficients between Xi and Xj, after removing the effect of xk, via nonparametric regression residuals.

Description

This function uses data on two column vectors, xi, xj and a third xk which can be a vector or a matrix, usually of the remaining variables in the model, including control variables, if any. It first removes missing data from all input variables. Then, it computes residuals of kernel regression (xi on xk) and (xj on xk). This is a block version of parcor_ijk.

Usage

parcorBijk(xi, xj, xk, blksiz = 10)

Arguments

xi

Input vector of data for variable xi

xj

Input vector of data for variable xj

xk

Input data for variables in xk, usually control variables

blksiz

block size, default=10, if chosen blksiz >n, where n=rows in matrix then blksiz=n. That is, no blocking is done

Value

ouij

Generalized partial correlation Xi with Xj (=cause) after removing xk

ouji

Generalized partial correlation Xj with Xi (=cause) after removing xk

allowing for control variables.

Note

This function calls kern,

Author(s)

Prof. H. D. Vinod, Economics Dept., Fordham University, NY.

See Also

See parcor_ijk.

Examples


## Not run: 
set.seed(34);x=matrix(sample(1:600)[1:99],ncol=3)
options(np.messages=FALSE)
parcorBijk(x[,1], x[,2], x[,3], blksi=10)

## End(Not run)#' 

generalCorr documentation built on Oct. 10, 2023, 1:06 a.m.