Nothing
#' Print Method for Geometric Networks
#'
#' Prints basic information of a geometric network related object.
#'
#' @param x A geometric network (object of class \code{gn}), a
#' point pattern on a geometric network (object of class \code{gnpp}) or a
#' fitted point process on a geometric network (object of class \code{gnppfit}).
#' @param ... Other arguments.
#' @return Invisibly returns the NULL object.
#' @export
print.gn <- function(x, ...){
stopifnot(inherits(x, "gn"))
cat(paste("Geometric network in", x$q, "dimensions with",
x$W, "vertices and", x$M, "curve segments.\n"))
invisible(NULL)
}
#' @rdname print.gn
#' @importFrom stats printCoefmat
#' @importFrom dplyr pull
#' @export
print.gnpp <- function(x, ...){
stopifnot(inherits(x, "gnpp"))
cat(paste0("Point pattern of size ", nrow(x$data),
" on a geometric network in ",
x$network$q, " dimensions.\n",
"Network has ", x$network$W, " vertices and ",
x$network$M, " curve segments.\n"))
cat("Point pattern has ")
if (ncol(x$network$lins) == 11) {
cat("no internal covariates and ")
} else {
if (ncol(x$network$lins) == 12) {
cat("1 internal covariate and ")
} else {
cat(paste(ncol(x$network$lins) - 11), "internal covariates and ")
}
}
if (ncol(x$data) == 6) {
cat("no external covariates.")
} else if (ncol(x$data) == 7) {
cat("1 external covariate.")
} else {
cat(paste(ncol(x$data) - 6, "external covariates."))
}
invisible(NULL)
}
#' @rdname print.gn
#' @export
print.gnppfit <- function(x, ...){
stopifnot(inherits(x, "gnppfit"))
cat(paste0("Fitted point process on a geometric network in ",
x$network$q, " dimensions.\n",
"Network has ", x$network$W, " vertices and ",
x$network$M, " curve segments.\n"))
invisible(NULL)
}
#' Print Method for Summaries
#'
#' Prints basic information of a geonet summary object.
#'
#' @param x A geonet summary object of class \code{summary.gn},
#' code{summary.gnpp} or \code{summary.gnppfit}.
#' @param ... Other arguments.
#' @return Invisibly returns the NULL object.
#' @export
print.summary.gn <- function(x, ...) {
stopifnot(inherits(x, "summary.gn"))
cat(paste("Geometric network in", x$q, "dimensions with",
x$W, "vertices\nand", x$M, "curve segments.\n"))
cat(paste("The linear representation of the network has", x$W_lins, "vertices\nand",
x$M_lins, "straight line segments.\n"))
cat(paste("Total length of the network:", round(x$total_length, 3),
x$unit$plural, "\n"))
cat(paste("Minimum segment length:", round(x$range_length[1], 3),
x$unit$plural, "\n"))
cat(paste("Maximum segment length:", round(x$range_length[2], 3),
x$unit$plural, "\n"))
cat(paste("Distribution of vertex degrees:"))
print(x$degrees)
}
#' @rdname print.summary.gn
#' @export
print.summary.gnpp <- function(x, ...) {
stopifnot(inherits(x, "summary.gnpp"))
cat(paste("Point pattern on a geometric network in", x$q, "dimensions with",
x$W, "vertices\nand", x$M, "curve segments.\n"))
cat(paste("The linear representation of the network has", x$W_lins, "vertices\nand",
x$M_lins, "straigt line segments.\n"))
cat(paste("Total length of the network:", round(x$total_length, 3),
x$unit$plural, "\n"))
if (length(x$covariates$internal) > 0) {
cat(paste("Number of network internal covariates:",
length(x$covariates$internal), "\n"))
for (i in 1:length(x$covariates$internal)) {
cat(paste(i, ") ", x$covariates$internal[[i]]$class, " variable \"",
names(x$covariates$internal)[i], "\":\n", sep = ""))
print(x$covariates$internal[[i]]$summary)
}
} else {
i <- 0
cat("Network has no internal covariates\n")
}
cat(paste("Number of points:", x$n_points, "\n"))
cat(paste("Average intensity:", round(x$average_intensity, 5), "points per",
x$unit$singular, "\n"))
if (length(x$covariates$external) > 0) {
cat(paste("Number of external covariates:",
length(x$covariates$external), "\n"))
for (j in (i+1):(length(x$covariates$external)+i)) {
cat(paste(j, ") ", x$covariates$external[[j-i]]$class, " variable \"",
names(x$covariates$external)[j-i], "\":\n", sep = ""))
print(x$covariates$external[[j-i]]$summary)
}
} else {
cat("Point pattern has no external covariates\n")
}
}
#' @rdname print.summary.gn
#' @importFrom stats printCoefmat
#' @export
print.summary.gnppfit <- function(x, ...){
stopifnot(inherits(x, "summary.gnppfit"))
cat(paste("Intensity estimation on a geometric network in", x$q, "dimensions\nwith",
x$W, "vertices and", x$M, "curve segments.\n"))
cat("Log-linear Poisson model fitted with maximum likelihood.\n")
cat(paste("\nGlobal knot distance:", round(x$setup$delta, 3), "\n"))
cat(paste("Global bin width:", round(x$setup$h, 3), "\n"))
cat("\nFormula: ")
print(x$formula, showEnv = FALSE)
if (!is.null(x$tab)) {
cat("\nParametric coefficients:\n")
printCoefmat(x$tab[, c(1:2, 6:7)], #digits = digits, signif.stars = signif.stars,
na.print = "NA", ...)
} else {
cat("\nModel has no parametric coefficients.\n")
}
cat(paste("\nEffective degrees of freedom of the baseline intensity:",
round(x$edf[1], 3), "\n"))
cat(paste0("\nNumber of Fellner-Schall-iterations: ", x$it_rho, "\n"))
invisible(NULL)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.