tests/testthat/test-for-bias.R

skip("Run interactively to avoid crashing R session")
context("Test for biases")

###########################################
## this line overwrites previous results ##
writeLines(paste0("# Results from tests/testthat/test-for-bias \n# Run date: ", Sys.Date()),
           "test-for-bias-results")
###########################################

library(geostan)
library(parallel)
library(testthat)
pars <- c("alpha", "beta1", "beta2")
W <- shape2mat(georgia, "W")
A <- shape2mat(georgia, "B")
P <- georgia$population
N <- nrow(georgia)
CP <- prep_car_data(A)
EV <- make_EV(A)

sim_params <- function() {    
        rho_x <- rbeta(n = 1, 3, 3)
        rho_phi <- rbeta(n = 1, 3, 3)
        beta <- runif(n = 2, -2, 2)
        alpha <- truncnorm::rtruncnorm(n = 1, mean = -5.5, sd = 1, a = -Inf, b = 0)
        sigma_phi <- 0.3
        l <- list(rho_x = rho_x,
             rho_phi = rho_phi,
             beta = beta,
             alpha = alpha,
             sigma_phi = sigma_phi
             )
        return (l)
}

sim_xy <- function(rho_x, alpha, beta, rho_phi, sigma_phi) {
        x <- sim_sar(m = 2, w = W, rho= rho_x, sigma = 0.5)
        x = scale(t(x), center = TRUE, scale = FALSE)
        phi <- sim_sar(m = 1, w = W, mu = as.numeric(alpha + x %*% beta), sigma = sigma_phi, rho = rho_phi)
        y <- rpois(n = N, lambda = exp(phi) * P)
        df <- data.frame(y = y, x1 = x[,1], x2 = x[,2], P = P, id = as.character(1:length(y)))
        return(df)
}

test_that("CAR: Log-linear spatial Poisson SLX models are unbiased", {
    # temp file for results
    tmp_car <- tempfile(fileext = "txt")
    # simulate spatial x, spatial y; fit model y ~ wx + x
    fit_fn_car <- function(i) {
        plist <- sim_params()
        df <- sim_xy(plist$rho_x, plist$alpha, plist$beta, plist$rho_phi, plist$sigma_phi)
        # CAR
        fit_car <- stan_car(y ~ offset(log(P)) + x1 + x2,
                            slx = ~ x1 + x2,
                            data = df,
                            family = poisson(),
                            car_parts = CP,
                            chains = 1,
                            iter = 2e3
                            )$summary
        res_car <- c(fit_car[c('intercept', 'x1', 'x2'), 'mean'] - c(plist$alpha, plist$beta)) 
        write.table(matrix(res_car,nrow=1), file = tmp_car, append = TRUE, row.names = FALSE, col.names = FALSE)
        cat(i, " (CAR) ")
    }
    nsim <- 50
    mclapply(1:nsim, fit_fn_car, mc.cores = 5)
    ## mean errors should all be zero
    res_car <- read.table(tmp_car)
    bias_car <- apply(res_car, 2, mean)
    std_error <- apply(res_car, 2, sd) / sqrt(nsim)
    for (i in 1:length(bias_car)) testthat::expect_equal(as.numeric(bias_car[i]), 0, tol = 2 * std_error)
    cat("# Context: CAR log-linear Poisson SLX models are unbiased", file = "test-for-bias-results", append = TRUE)
    cat(paste0("\n# ", pars, " ", round(bias_car, 3), " Expected result: 0 \\pm ", round(2 * std_error, 3)),
        file = "test-for-bias-results",
        append = TRUE)
})

    
test_that("ESF: Log-linear spatial Poisson SLX models are unbiased", {
    # temp file for results
    tmp_esf <- tempfile(fileext = "txt")
    # simulate spatial x, spatial y; fit model y ~ wx + x    
    fit_fn_esf <- function(i) {
        plist <- sim_params()
        df <- sim_xy(plist$rho_x, plist$alpha, plist$beta, plist$rho_phi, plist$sigma_phi)
        # ESF
        fit_esf <- stan_esf(y ~ offset(log(P)) + x1 + x2,
                            slx = ~ x1 + x2,
                            re = ~ id,
                            data = df,
                            family = poisson(),
                            EV = EV,
                            C = A,
                            chains = 1,
                            refresh = 50,
                            iter = 2500
                            )$summary
        res_esf <- c(fit_esf[c('intercept', 'x1', 'x2'), 'mean'] - c(plist$alpha, plist$beta)) 
        write.table(matrix(res_esf,nrow=1), file = tmp_esf, append = TRUE, row.names = FALSE, col.names = FALSE)
        cat(i, " (ESF)")
    }
    nsim <- 50
    mclapply(1:nsim, fit_fn_esf, mc.cores = 5)
    ## mean errors should all be zero
    res_esf <- read.table(tmp_esf)
    bias_esf <- apply(res_esf, 2, mean)
    std_error <- apply(res_esf, 2, sd) / sqrt(nsim)
    for (i in 1:length(bias_esf)) testthat::expect_equal(as.numeric(bias_esf[i]), 0, tol = 2 * std_error)
    cat("\n# Context: ESF log-linear Poisson SLX models are unbiased", file = "test-for-bias-results", append = TRUE)
    cat(paste0("\n# ", pars, " ", round(bias_esf, 3), " Expected result: 0 \\pm ", round(2 * std_error, 3)),
        file = "test-for-bias-results",
        append = TRUE)
})

test_that("BYM: Log-linear spatial Poisson SLX models are unbiased", {
    # temp file for results
    tmp_icar <- tempfile(fileext = "txt")
    # simulate spatial x, spatial y; fit model y ~ wx + x
    fit_fn_icar <- function(i) {
        plist <- sim_params()
        df <- sim_xy(plist$rho_x, plist$alpha, plist$beta, plist$rho_phi, plist$sigma_phi)
        # ESF
        fit_icar <- stan_icar(y ~ offset(log(P)) + x1 + x2,
                            slx = ~ x1 + x2,
                            type = "bym",
                            data = df,
                            family = poisson(),
                            C = A,
                            chains = 1,
                            refresh = 50,
                            iter = 3e3
                            )$summary
        res_icar <- c(fit_icar[c('intercept', 'x1', 'x2'), 'mean'] - c(plist$alpha, plist$beta)) 
        write.table(matrix(res_icar,nrow=1), file = tmp_icar, append = TRUE, row.names = FALSE, col.names = FALSE)
        cat(i, " (ICAR)")
    }       
    nsim <- 50
    mclapply(1:nsim, fit_fn_icar, mc.cores = 5)
    ## mean errors should all be zero
    res_icar <- read.table(tmp_icar)
    bias_icar <- apply(res_icar, 2, mean)
    std_error <- apply(res_icar, 2, sd) / sqrt(nsim)    
    for (i in 1:length(bias_icar)) testthat::expect_equal(as.numeric(bias_icar[i]), 0, tol = 2 * std_error)
    cat("\n# Context: BYM log-linear Poisson SLX models are unbiased", file = "test-for-bias-results", append = TRUE)
    cat(paste0("\n# ", pars, " ", round(bias_icar, 3), " Expected result: 0 \\pm ", round(2 * std_error, 3)),
        file = "test-for-bias-results",
        append = TRUE)
})

Try the geostan package in your browser

Any scripts or data that you put into this service are public.

geostan documentation built on April 3, 2025, 10:04 p.m.