View source: R/gets-base-source.R
| regressorsVariance | R Documentation |
The function creates the regressors of a log-variance model, e.g. in a arx model. The returned value is a matrix with the regressors and, by default, the regressand in the first column. By default, observations (rows) with missing values are removed in the beginning and the end with na.trim, and the returned matrix is a zoo object.
regressorsVariance(e, vc = TRUE, arch = NULL, harch = NULL, asym = NULL,
asymind = NULL, log.ewma = NULL, vxreg = NULL, prefix = "v", zero.adj = NULL,
vc.adj = TRUE, return.regressand = TRUE, return.as.zoo = TRUE, na.trim = TRUE,
na.omit = FALSE)
e |
numeric vector, time-series or |
vc |
logical. |
arch |
either |
harch |
either |
asym |
either |
asymind |
either |
log.ewma |
either |
vxreg |
either |
prefix |
a |
zero.adj |
|
vc.adj |
deprecated and ignored. |
return.regressand |
|
return.as.zoo |
|
na.trim |
|
na.omit |
|
A matrix, by default of class zoo, with the regressand as column one (the default).
Genaro Sucarrat, http://www.sucarrat.net/
Corsi, Fulvio (2009): 'A Simple Approximate Long-Memory Model of Realized Volatility', Journal of Financial Econometrics 7, pp. 174-196
Muller, Ulrich A., Dacorogna, Michel M., Dave, Rakhal D., Olsen, Richard B, Pictet, Olivier, Weizsaker, Jacob E. (1997): 'Volatilities of different time resolutions - Analyzing the dynamics of market components'. Journal of Empirical Finance 4, pp. 213-239
Pretis, Felix, Reade, James and Sucarrat, Genaro (2018): 'Automated General-to-Specific (GETS) Regression Modeling and Indicator Saturation for Outliers and Structural Breaks'. Journal of Statistical Software 86, Number 3, pp. 1-44. DOI: https://www.jstatsoft.org/article/view/v086i03
Sucarrat, Genaro and Escribano, Alvaro (2012): 'Automated Financial Model Selection: General-to-Specific Modelling of the Mean and Volatility Specifications', Oxford Bulletin of Economics and Statistics 74, Issue 5 (October), pp. 716-735
regressorsMean, arx, zoo, leqwma, na.trim and na.omit.
##generate some data:
eps <- rnorm(10) #error term
x <- matrix(rnorm(10*5), 10, 5) #regressors
##create regressors (examples):
regressorsVariance(eps, vxreg=x)
regressorsVariance(eps, vxreg=x, return.regressand=FALSE)
regressorsVariance(eps, arch=1:3, vxreg=x)
regressorsVariance(eps, arch=1:2, asym=1, vxreg=x)
regressorsVariance(eps, arch=1:2, asym=1, log.ewma=5)
##example where eps and x are time-series:
eps <- ts(eps, frequency=4, end=c(2018,4))
x <- ts(x, frequency=4, end=c(2018,4))
regressorsVariance(eps, vxreg=x)
regressorsVariance(eps, arch=1:3, vxreg=x)
regressorsVariance(eps, arch=1:2, asym=1, vxreg=x)
regressorsVariance(eps, arch=1:2, asym=1, log.ewma=5)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.