R/view-zoom.R

Defines functions ri trajectory transition_window view_zoom

Documented in view_zoom

#' @include view-step.R
NULL

#' Pan and zoom smoothly between different states
#'
#' This view is in many ways equivalent to [view_step()] and
#' [view_step_manual()] but instead of simply tweening the bounding box of each
#' view it implement the smooth zoom and pan technique developed by Reach &
#' North (2018). It gradually zooms out and then in during the pan to allow a
#' smooth transition of the view. As with [view_step()] the standard version
#' will look at the data present in the calculated frames and set the ranges
#' based on that, while the `_manual` version will allow you to define your own
#' ranges to zoom between.
#'
#' @references Reach, A., North, C. (2018) *Smooth, Efficient, and Interruptible Zooming and Panning*. IEEE Transactions on Visualization and Computer Graphics DOI:10.1109/TVCG.2018.2800013
#'
#' @param pan_zoom The tradeoff between pan- and zoom-induced movement. Negative
#' values will value zoom over pan and positive values will value pan over zoom
#' @inheritParams view_step
#'
#' @family views
#'
#' @importFrom ggplot2 ggproto
#' @export
#'
#' @examples
#' anim <- ggplot(iris, aes(Petal.Length, Petal.Width, colour = Species)) +
#'   geom_point() +
#'   transition_states(Species, transition_length = 2, state_length = 1) +
#'   shadow_mark(past = TRUE, future = TRUE, colour = 'grey') +
#'   view_zoom(pause_length = 1, step_length = 2, nsteps = 3)
#'
#' # Use pan_zoom to change the relationship between pan- and zoom movement
#' # Mainly zooming
#' anim1 <- ggplot(iris, aes(Petal.Length, Petal.Width, colour = Species)) +
#'   geom_point() +
#'   transition_states(Species, transition_length = 2, state_length = 1) +
#'   shadow_mark(past = TRUE, future = TRUE, colour = 'grey') +
#'   view_zoom(pause_length = 1, step_length = 2, nsteps = 3, pan_zoom = -3)
#'
#' # Mainly panning
#' anim2 <- ggplot(iris, aes(Petal.Length, Petal.Width, colour = Species)) +
#'   geom_point() +
#'   transition_states(Species, transition_length = 2, state_length = 1) +
#'   shadow_mark(past = TRUE, future = TRUE, colour = 'grey') +
#'   view_zoom(pause_length = 1, step_length = 2, nsteps = 3, pan_zoom = -3)
#'
view_zoom <- function(pause_length = 1, step_length = 1, nsteps = NULL, look_ahead = 0,
                      delay = 0, include = FALSE, pan_zoom = 0, ease = 'sine-in-out', wrap = TRUE, pause_first = TRUE,
                      fixed_x = FALSE, fixed_y = FALSE, exclude_layer = NULL, aspect_ratio = 1) {
  ggproto(NULL, ViewZoom,
          fixed_lim = list(x = fixed_x, y = fixed_y),
          exclude_layer = exclude_layer,
          aspect_ratio = aspect_ratio,
          params = list(
            pause_length = pause_length,
            step_length = step_length,
            nsteps = nsteps,
            look_ahead = look_ahead,
            delay = delay,
            include = include,
            pan_zoom = exp(pan_zoom),
            ease = ease,
            wrap = wrap,
            pause_first = pause_first
          )
  )
}

transition_window <- function(windows, next_window, n, params) {
  if (is.null(windows$.frame)) {
    windows$.id <- seq_len(nrow(windows))
    windows$.phase <- 'raw'
    windows$.frame <- seq_len(nrow(windows))
  } else {
    attr(windows, 'nframes') <- NULL
  }
  if (nrow(windows) == 1) n <- n - 1
  start <- windows[nrow(windows), , drop = FALSE]
  w0 <- start$xmax - start$xmin
  w1 <- next_window$xmax - next_window$xmin
  x0 <- start$xmin + w0/2
  x1 <- next_window$xmin + w1/2
  x_traj <- trajectory(x0, x1, w0, w1, n + 1, params$pan_zoom, params$ease)

  h0 <- start$ymax - start$ymin
  h1 <- next_window$ymax - next_window$ymin
  y0 <- start$ymin + h0/2
  y1 <- next_window$ymin + h1/2
  y_traj <- trajectory(y0, y1, h0, h1, n + 1, params$pan_zoom, params$ease)

  new_windows <- data_frame0(
    xmin = as.vector(x_traj$u - x_traj$v/2),
    xmax = as.vector(x_traj$u + x_traj$v/2),
    ymin = as.vector(y_traj$u - y_traj$v/2),
    ymax = as.vector(y_traj$u + y_traj$v/2),
    .frame = seq_len(n + 1) - 1 + if (is.null(start$.frame)) 0 else start$.frame
  )
  missing_cols <- setdiff(names(start), names(new_windows))
  new_windows[missing_cols] <- start[1, missing_cols, drop = FALSE]
  vec_rbind0(
    windows,
    new_windows[-1, match(names(start), names(new_windows))]
  )
}

#' @rdname gganimate-ggproto
#' @format NULL
#' @usage NULL
#' @export
#' @importFrom ggplot2 ggproto
#' @importFrom tweenr tween_numeric
ViewZoom <- ggproto('ViewZoom', ViewStep,
                    window_transition = transition_window
)

trajectory <- function(u0, u1, v0, v1, n, tradeoff, ease) {
  v0 <- v0 * tradeoff
  v1 <- v1 * tradeoff
  s <- tween_numeric(c(0, 1), n, ease)[[1]]
  if (all(u0 == u1)) {
    u <- matrix(u0, ncol = length(u0), nrow = n, byrow = TRUE)
    k <- sign(v1 - v0)
    S <- abs(log(v1/v0))
    s <- s * S
    v <- v0 * exp(s * k)
  } else {
    lu <- sqrt(sum((u1 - u0)^2))
    r0 <- ri(v1, v0, 0, lu)
    r1 <- ri(v1, v0, 1, lu)
    S <- r1 - r0
    s <- s * S
    cosh_s_r0 <- cosh(s + r0)
    v <- v0 * cosh(r0) / cosh_s_r0
    u_part1 <- v0 * (sinh(s) / cosh_s_r0)
    u_part2 <- (u1 - u0) / lu
    u_part12 <- vapply(u_part2, `*`, u_part1, u_part1)
    u <- matrix(u0, ncol = length(u0))[rep(1, length(u_part1))] + u_part12
  }
  list(u = u, v = v/tradeoff)
}

ri <- function(v1, v0, i, lu) {
  top <- v1^2 - v0^2 + (-1)^i * lu^2
  bottom <- -2 * (if (i == 0) v0 else v1) * lu
  asinh(top/bottom)
}

Try the gganimate package in your browser

Any scripts or data that you put into this service are public.

gganimate documentation built on May 29, 2024, 2:58 a.m.