Nothing
# Meta-geom for intervals, densities, and their combinations
#
# Author: mjskay
###############################################################################
# thickness handling functions -------------------------------------------------------
#' normalize thickness values to between 0 and 1
#' @noRd
normalize_thickness = function(x) UseMethod("normalize_thickness")
#' @export
normalize_thickness.NULL = function(x) {
NULL
}
#' @export
normalize_thickness.default = function(x) {
lower = NA_real_
upper = NA_real_
finite_thickness = x[is.finite(x)]
if (length(finite_thickness) > 0) {
max_finite_thickness = max(finite_thickness)
min_finite_thickness = min(finite_thickness, 0)
if (max_finite_thickness > min_finite_thickness) {
lower = min_finite_thickness
upper = max_finite_thickness
x = (x - lower) / (upper - lower)
}
}
# infinite values get plotted at the max height (e.g. for point masses)
if (length(x) > 0) {
x[x == Inf] = 1
}
thickness(x, lower, upper)
}
#' @export
normalize_thickness.ggdist_thickness = function(x) {
# thickness values passed directly into the geom (e.g. by
# scale_thickness_shared()) are not normalized again.
# infinite values get plotted at the max height (e.g. for point masses)
if (length(x) > 0) {
field(x, "x")[field(x, "x") == Inf] = 1
}
x
}
#' @export
normalize_thickness.data.frame = function(x) {
x$thickness = normalize_thickness(x$thickness)
x
}
#' rescale the slab data (ymin / ymax) to be within the confines of the bounding box
#' we do this *again* here (rather than in setup_data) because
#' position_dodge doesn't work if we only do it up there:
#' positions (like dodge) might change the heights so they aren't
#' all the same, and we want to preserve our normalization settings.
#' so we scale things based on the min height to ensure everything
#' is the same height
#' @returns a list of two elements:
#' - data: a data frame containing the transformed version of `s_data`
#' - subguide_params: a data frame with one row per transformed group
#' in the output giving the parameters of the transformation
#' @noRd
rescale_slab_thickness = function(
s_data, orientation, normalize, na.rm,
name = "geom_slabinterval"
) {
define_orientation_variables(orientation)
# remove missing values - thickness NAs are fine here since they just create
# breaks in the slab (handled elsewhere in geom_slabinterval), but missing height
# means we can't even determine slab dimensions, so need a warning
s_data = ggplot2::remove_missing(s_data, na.rm, c(height, "justification", "scale"), name = name, finite = TRUE)
# side is a character vector, thus need finite = FALSE for it; x/y can be Inf here
s_data = ggplot2::remove_missing(s_data, na.rm, c(x, y, "side"), name = name)
if (nrow(s_data) == 0) return(list(data = s_data, subguide_params = data.frame()))
min_height = min(s_data[[height]])
# must do this within groups so that `side` can vary by slab
data__params = dlply_(s_data, c("group", y), function(d) {
scaling_aes = c("side", "justification", "scale")
for (a in scaling_aes) {
# use %in% here so that `NA`s are treated as equal
if (!isTRUE(all(d[[a]] %in% d[[a]][[1]]))) {
stop0(
"Slab `", a, "` cannot vary within groups:\n",
"all rows within the same slab must have the same `", a, "`."
)
}
}
thickness_scale = d$scale[[1]] * min_height
subguide_params = data.frame(
group = d$group[[1]],
side = d$size[[1]],
justification = d$justification[[1]],
scale = d$scale[[1]],
thickness_lower = thickness_lower(d$thickness),
thickness_upper = thickness_upper(d$thickness)
)
subguide_params[[y]] = d[[y]][[1]]
thickness = as.numeric(d$thickness)
switch_side(d$side[[1]], orientation,
topright = {
subguide_params[[ymin]] = d[[y]][[1]] - d$justification[[1]] * thickness_scale
subguide_params[[ymax]] = d[[y]][[1]] + (1 - d$justification[[1]]) * thickness_scale
d[[ymin]] = d[[y]] - d$justification * thickness_scale
d[[ymax]] = d[[y]] + (thickness - d$justification) * thickness_scale
},
bottomleft = {
subguide_params[[ymin]] = d[[y]][[1]] + (1 - d$justification[[1]]) * thickness_scale
subguide_params[[ymax]] = d[[y]][[1]] - d$justification[[1]] * thickness_scale
d[[ymin]] = d[[y]] - (thickness - 1 + d$justification) * thickness_scale
d[[ymax]] = d[[y]] + (1 - d$justification) * thickness_scale
},
both = {
subguide_params[[ymin]] = d[[y]][[1]] + (0.5 - d$justification[[1]]) * thickness_scale
subguide_params[[ymax]] = d[[y]][[1]] + (1 - d$justification[[1]]) * thickness_scale
d[[ymin]] = d[[y]] - thickness * thickness_scale/2 + (0.5 - d$justification) * thickness_scale
d[[ymax]] = d[[y]] + thickness * thickness_scale/2 + (0.5 - d$justification) * thickness_scale
}
)
list(data = d, subguide_params = subguide_params)
})
list(
data = map_dfr_(data__params, `[[`, "data"),
subguide_params = map_dfr_(data__params, `[[`, "subguide_params")
)
}
# drawing functions -------------------------------------------------------
draw_slabs = function(self, s_data, panel_params, coord,
orientation, normalize, fill_type, na.rm, subguide,
...
) {
define_orientation_variables(orientation)
c(s_data, subguide_params) %<-% rescale_slab_thickness(
s_data, orientation, normalize, na.rm, name = "geom_slabinterval"
)
s_data = self$override_slab_aesthetics(s_data)
# avoid giving fill type warnings multiple times
fill_type = switch_fill_type(fill_type, segments = "segments", gradient = "gradient")
# handle NAs: NAs in thickness should cause slabs to be broken apart into separate
# pieces. We'll do this by creating a column to encode runs of NAs that we can
# use in the grouping below.
s_data$na_thickness_group = cumsum(is.na(s_data$thickness))
# now that we've used them for grouping, we can drop rows with NA values of thickness
s_data = s_data[!is.na(s_data$thickness),]
# if dropping NAs caused this slab to be empty, return early
if (nrow(s_data) == 0) return(list())
# build groups for the slabs
# must group within both group and y for the polygon and path drawing functions to work
slab_grobs = dlply_(s_data, c("group", "na_thickness_group", y), function(d) {
d = d[order(d[[x]]),]
slab_grob = if (!is.null(d$fill) && !all(is.na(d$fill))) {
# only bother drawing the slab if it has some fill colour to it
switch_fill_type(fill_type,
segments = {
# split out slab data according to aesthetics that we want to be able to
# vary along the length of the slab, then assemble the top and bottom lines
# into a single entity
slab_data = group_slab_data_by(d, c("fill", "alpha"), orientation, side = "both")
draw_polygon(transform(slab_data, colour = NA), panel_params, coord)
},
gradient = {
# build a linearGradient() representing the varying fill
gradient = make_gradient_fill(coord$transform(d, panel_params), orientation)
slab_data = group_slab_data_by(d, NULL, orientation, side = "both")
draw_polygon(transform(slab_data, colour = NA), panel_params, coord, fill = gradient)
}
)
}
if (!is.null(d$colour) && !all(is.na(d$colour))) {
# we have an outline to draw around the outside of the slab:
# the definition of "outside" depends on the value of `side`:
side = d$side[[1]]
if (side == "both") {
outline_data_top = group_slab_data_by(
d, c("colour", "alpha", "linewidth", "linetype"), orientation, "top"
)
outline_data_bottom = group_slab_data_by(
d, c("colour", "alpha", "linewidth", "linetype"), orientation, "bottom"
)
gList(
slab_grob,
draw_path(outline_data_top, panel_params, coord),
draw_path(outline_data_bottom, panel_params, coord)
)
} else {
outline_data = group_slab_data_by(
d, c("colour", "alpha", "linewidth", "linetype"), orientation, side
)
gList(
slab_grob,
draw_path(outline_data, panel_params, coord)
)
}
} else {
slab_grob
}
})
subguide_grobs = if (identical(subguide, "none")) {
# quick exit, also avoid errors for multiple non-equal axes when not drawing them
list()
} else {
subguide_fun = match_function(subguide, "subguide_")
subguide_params = coord$transform(subguide_params, panel_params)
dlply_(subguide_params, c(y, "side", "justification", "scale"), function(d) {
d$group = NULL
if (nrow(unique(d)) > 1) {
cli_abort(
"Cannot draw a subguide for the thickness axis when multiple slabs
with different normalizations are drawn on the same axis.",
class = "ggdist_incompatible_subguides"
)
}
# construct a viewport such that the guide drawn in this viewport
# will have its data values at the correct locations
vp = viewport(just = c(0, 0))
vp[[x]] = unit(0, "native")
vp[[y]] = unit(d[[ymin]], "native")
vp[[width.]] = unit(1, "npc")
vp[[height]] = unit(d[[ymax]] - d[[ymin]], "native")
grobTree(
subguide_fun(c(d$thickness_lower, d$thickness_upper), orientation = orientation),
vp = vp
)
})
}
# when side = "top" or "right", need to invert draw order so that overlaps happen in a sensible way
# unfortunately we can only do this by checking the first value of `side`, which
# means this may be incorrect if `side` varies across slabs
slab_grobs = switch_side(s_data$side[[1]], orientation,
topright = rev(slab_grobs),
bottomleft = slab_grobs,
both = slab_grobs
)
c(slab_grobs, subguide_grobs)
}
draw_pointintervals = function(self, i_data, panel_params, coord,
orientation, interval_size_domain, interval_size_range, fatten_point, show_point, na.rm,
arrow,
...
) {
if (nrow(i_data) == 0) return(list())
define_orientation_variables(orientation)
if (is.null(i_data[[xmin]]) || is.null(i_data[[xmax]])) {
stop0(glue('
You did not specify {xmin} or {xmax} aesthetics, which are needed to
draw intervals with {snake_case(class(self)[[1]])}.
- If you were using ggdist or tidybayes prior to version 2.1,
these aesthetics were automatically set to ".lower" and ".upper" if
those columns were in your data, in which case you may need to set
aes({xmin} = .lower, {xmax} = .upper) explicitly.
'))
}
interval_grobs = list()
point_grobs = list()
# reorder by interval width so largest intervals are drawn first
i_data = i_data[order(abs(i_data[[xmax]] - i_data[[xmin]]), decreasing = TRUE),]
point_grobs = if (show_point) {
p_data = self$override_point_aesthetics(i_data, interval_size_domain, interval_size_range, fatten_point)
point_grobs = list(GeomPoint$draw_panel(p_data, panel_params, coord, na.rm = na.rm))
}
i_data[[x]] = i_data[[xmin]]
i_data[[xend]] = i_data[[xmax]]
i_data[[yend]] = i_data[[y]]
i_data = self$override_interval_aesthetics(i_data, interval_size_domain, interval_size_range)
interval_grobs = list(
GeomSegment$draw_panel(i_data, panel_params, coord, lineend = "butt", na.rm = na.rm, arrow = arrow)
)
c(interval_grobs, point_grobs)
}
draw_path = function(data, panel_params, coord) {
do.call(gList, dlply_(data, "group", function(outline_data) {
munched_path = ggplot2::coord_munch(coord, outline_data, panel_params)
grid::polylineGrob(
munched_path$x,
munched_path$y,
default.units = "native",
gp = grid::gpar(
col = alpha(munched_path$colour, munched_path$alpha),
lwd = munched_path$linewidth * .pt,
lty = munched_path$linetype,
lineend = "butt",
linejoin = "bevel",
linemitre = 10
)
)
}))
}
# aesthetic overrides -----------------------------------------------------
override_slab_aesthetics = function(self, s_data) {
s_data$colour = s_data[["slab_colour"]]
s_data$fill = s_data[["slab_fill"]] %||% s_data[["fill"]]
s_data$fill = ramp_colours(s_data[["fill"]], s_data[["fill_ramp"]])
s_data$alpha = s_data[["slab_alpha"]] %||% s_data[["alpha"]]
#TODO: insert slab_size deprecation warning?
s_data$linewidth = s_data[["slab_linewidth"]] %||% s_data[["slab_size"]]
s_data$linetype = s_data[["slab_linetype"]] %||% s_data[["linetype"]]
s_data
}
override_point_aesthetics = function(self, p_data, size_domain, size_range, fatten_point) {
p_data$colour = p_data[["point_colour"]] %||% p_data[["colour"]]
p_data$colour = ramp_colours(p_data[["colour"]], p_data[["colour_ramp"]])
p_data$fill = p_data[["point_fill"]] %||% p_data[["fill"]]
p_data$alpha = p_data[["point_alpha"]] %||% p_data[["alpha"]]
# TODO: insert fatten_point deprecation warning
p_data$size = p_data[["point_size"]] %||%
(fatten_point * transform_size(p_data[["interval_size"]] %||% p_data[["size"]], size_domain, size_range))
p_data
}
override_interval_aesthetics = function(self, i_data, size_domain, size_range) {
i_data$colour = i_data[["interval_colour"]] %||% i_data[["colour"]]
i_data$colour = ramp_colours(i_data[["colour"]], i_data[["colour_ramp"]])
i_data$alpha = i_data[["interval_alpha"]] %||% i_data[["alpha"]]
# TODO: insert interval_size deprecation warning
i_data$linewidth = transform_size(
i_data[["linewidth"]] %||% i_data[["interval_size"]] %||% i_data[["size"]], size_domain, size_range
)
i_data$linetype = i_data[["interval_linetype"]] %||% i_data[["linetype"]]
i_data
}
transform_size = function(size, size_domain, size_range) {
pmax(
(size - size_domain[[1]]) /
(size_domain[[2]] - size_domain[[1]]) *
(size_range[[2]] - size_range[[1]]) +
size_range[[1]],
0
)
}
# geom_slabinterval -------------------------------------------------------
#' Slab + point + interval meta-geom
#'
#' This meta-geom supports drawing combinations of functions (as slabs, aka ridge plots or joy plots), points, and
#' intervals. It acts as a meta-geom for many other \pkg{ggdist} geoms that are wrappers around this geom, including
#' eye plots, half-eye plots, CCDF barplots, and point+multiple interval plots, and supports both horizontal and
#' vertical orientations, dodging (via the `position` argument), and relative justification of slabs with their
#' corresponding intervals.
#'
#' [geom_slabinterval()] is a flexible meta-geom that you can use directly or through a variety of "shortcut"
#' geoms that represent useful combinations of the various parameters of this geom. In many cases you will want to
#' use the shortcut geoms instead as they create more useful mnemonic primitives, such as eye plots,
#' half-eye plots, point+interval plots, or CCDF barplots.
#'
#' The *slab* portion of the geom is much like a ridge or "joy" plot: it represents the value of a function
#' scaled to fit between values on the `x` or `y` axis (depending on the value of `orientation`). Values of
#' the functions are specified using the `thickness` aesthetic and are scaled to fit into `scale`
#' times the distance between points on the relevant axis. E.g., if `orientation` is `"horizontal"`,
#' `scale` is `0.9`, and `y` is a discrete variable, then the `thickness` aesthetic specifies the
#' value of some function of `x` that is drawn for every `y` value and scaled to fit into `0.9` times
#' the distance between points on the `y` axis.
#'
#' For the *interval* portion of the geom, `x` and `y` aesthetics specify the location of the
#' point, and `ymin`/`ymax` or `xmin`/`xmax` (depending on the value of `orientation`)
#' specify the endpoints of the interval. A scaling factor for interval line width and point size is applied
#' through the `interval_size_domain`, `interval_size_range`, and `fatten_point` parameters.
#' These scaling factors are designed to give multiple uncertainty intervals reasonable
#' scaling at the default settings for [scale_size_continuous()].
#'
#' As a combination geom, this geom expects a `datatype` aesthetic specifying which part of the geom a given
#' row in the input data corresponds to: `"slab"` or `"interval"`. However, specifying this aesthetic
#' manually is typically only necessary if you use this geom directly; the numerous wrapper geoms will
#' usually set this aesthetic for you as needed, and their use is recommended unless you have a very custom
#' use case.
#'
#' Wrapper geoms include:
#'
#' - [geom_pointinterval()]
#' - [geom_interval()]
#' - [geom_slab()]
#'
#' In addition, the [stat_slabinterval()] family of stats uses geoms from the
#' [geom_slabinterval()] family, and is often easier to use than using these geoms
#' directly. Typically, the `geom_*` versions are meant for use with already-summarized data (such as intervals) and the
#' `stat_*` versions are summarize the data themselves (usually draws from a distribution) to produce the geom.
#'
#' @eval rd_layer_params("slabinterval")
#' @eval rd_slabinterval_aesthetics()
#' @inheritParams ggplot2::layer
#' @param ... Other arguments passed to [layer()]. These are often aesthetics, used to set an aesthetic
#' to a fixed value, like `colour = "red"` or `linewidth = 3` (see **Aesthetics**, below). They may also be
#' parameters to the paired geom/stat.
#' @param position Position adjustment, either as a string, or the result of a call to a position adjustment function.
#' Setting this equal to `"dodge"` ([position_dodge()]) or `"dodgejust"` ([position_dodgejust()]) can be useful if
#' you have overlapping geometries.
#' @return A [ggplot2::Geom] representing a slab or combined slab+interval geometry which can
#' be added to a [ggplot()] object.
#' @author Matthew Kay
#' @seealso See [geom_lineribbon()] for a combination geom designed for fit curves plus probability bands.
#' See [geom_dotsinterval()] for a combination geom designed for plotting dotplots with intervals.
#' See [stat_slabinterval()] for families of stats
#' built on top of this geom for common use cases (like [stat_halfeye()]).
#' See `vignette("slabinterval")` for a variety of examples of use.
#' @examples
#'
#' # geom_slabinterval() is typically not that useful on its own.
#' # See vignette("slabinterval") for a variety of examples of the use of its
#' # shortcut geoms and stats, which are more useful than using
#' # geom_slabinterval() directly.
#'
#' @importFrom ggplot2 GeomSegment GeomPolygon
#' @importFrom rlang %||%
#' @name geom_slabinterval
NULL
#' @rdname ggdist-ggproto
#' @format NULL
#' @usage NULL
#' @export
GeomSlabinterval = ggproto("GeomSlabinterval", AbstractGeom,
## aesthetics --------------------------------------------------------------
aes_docs = list(
"Slab-specific aesthetics" = list(
thickness =
'The thickness of the slab at each `x` value (if `orientation = "horizontal"`) or
`y` value (if `orientation = "vertical"`) of the slab.',
side =
'Which side to place the slab on. `"topright"`, `"top"`, and `"right"` are synonyms
which cause the slab to be drawn on the top or the right depending on if `orientation` is `"horizontal"`
or `"vertical"`. `"bottomleft"`, `"bottom"`, and `"left"` are synonyms which cause the slab
to be drawn on the bottom or the left depending on if `orientation` is `"horizontal"` or
`"vertical"`. `"topleft"` causes the slab to be drawn on the top or the left, and `"bottomright"`
causes the slab to be drawn on the bottom or the right. `"both"` draws the slab mirrored on both
sides (as in a violin plot).',
scale =
'What proportion of the region allocated to this geom to use to draw the slab. If `scale = 1`,
slabs that use the maximum range will just touch each other. Default is `0.9` to leave some space
between adjacent slabs. For a comprehensive discussion and examples of slab scaling and normalization,
see the [`thickness` scale article](https://mjskay.github.io/ggdist/articles/thickness.html).',
justification =
'Justification of the interval relative to the slab, where `0` indicates bottom/left
justification and `1` indicates top/right justification (depending on `orientation`). If `justification`
is `NULL` (the default), then it is set automatically based on the value of `side`: when `side` is
`"top"`/`"right"` `justification` is set to `0`, when `side` is `"bottom"`/`"left"`
`justification` is set to `1`, and when `side` is `"both"` `justification` is set to 0.5.',
datatype =
'When using composite geoms directly without a `stat` (e.g. [geom_slabinterval()]), `datatype` is used to
indicate which part of the geom a row in the data targets: rows with `datatype = "slab"` target the
slab portion of the geometry and rows with `datatype = "interval"` target the interval portion of
the geometry. This is set automatically when using ggdist `stat`s.'
),
"Interval-specific aesthetics" = list(
xmin = 'Left end of the interval sub-geometry (if `orientation = "horizontal"`).',
xmax = 'Right end of the interval sub-geometry (if `orientation = "horizontal"`).',
ymin = 'Lower end of the interval sub-geometry (if `orientation = "vertical"`).',
ymax = 'Upper end of the interval sub-geometry (if `orientation = "vertical"`).'
),
"Point-specific aesthetics" = list(
shape = 'Shape type used to draw the **point** sub-geometry.'
),
"Color aesthetics" = list(
colour = '(or `color`) The color of the **interval** and **point** sub-geometries.
Use the `slab_color`, `interval_color`, or `point_color` aesthetics (below) to
set sub-geometry colors separately.',
fill = 'The fill color of the **slab** and **point** sub-geometries. Use the `slab_fill`
or `point_fill` aesthetics (below) to set sub-geometry colors separately.',
alpha = 'The opacity of the **slab**, **interval**, and **point** sub-geometries. Use the `slab_alpha`,
`interval_alpha`, or `point_alpha` aesthetics (below) to set sub-geometry colors separately.',
colour_ramp = '(or `color_ramp`) A secondary scale that modifies the `color`
scale to "ramp" to another color. See [scale_colour_ramp()] for examples.',
fill_ramp = 'A secondary scale that modifies the `fill`
scale to "ramp" to another color. See [scale_fill_ramp()] for examples.'
),
"Line aesthetics" = list(
linewidth = 'Width of the line used to draw the **interval** (except with [geom_slab()]: then
it is the width of the **slab**). With composite geometries including an interval and slab,
use `slab_linewidth` to set the line width of the **slab** (see below). For **interval**, raw
`linewidth` values are transformed according to the `interval_size_domain` and `interval_size_range`
parameters of the `geom` (see above).',
size = 'Determines the size of the **point**. If `linewidth` is not provided, `size` will
also determines the width of the line used to draw the **interval** (this allows line width and
point size to be modified together by setting only `size` and not `linewidth`). Raw
`size` values are transformed according to the `interval_size_domain`, `interval_size_range`,
and `fatten_point` parameters of the `geom` (see above). Use the `point_size` aesthetic
(below) to set sub-geometry size directly without applying the effects of
`interval_size_domain`, `interval_size_range`, and `fatten_point`.',
stroke = 'Width of the outline around the **point** sub-geometry.',
linetype = 'Type of line (e.g., `"solid"`, `"dashed"`, etc) used to draw the **interval**
and the outline of the **slab** (if it is visible). Use the `slab_linetype` or
`interval_linetype` aesthetics (below) to set sub-geometry line types separately.'
),
"Slab-specific color and line override aesthetics" = list(
slab_fill = 'Override for `fill`: the fill color of the slab.',
slab_colour = '(or `slab_color`) Override for `colour`/`color`: the outline color of the slab.',
slab_alpha = 'Override for `alpha`: the opacity of the slab.',
slab_linewidth = 'Override for `linwidth`: the width of the outline of the slab.',
slab_linetype = 'Override for `linetype`: the line type of the outline of the slab.',
slab_shape = 'Override for `shape`: the shape of the dots used to draw the dotplot slab.'
),
"Interval-specific color and line override aesthetics" = list(
interval_colour = '(or `interval_color`) Override for `colour`/`color`: the color of the interval.',
interval_alpha = 'Override for `alpha`: the opacity of the interval.',
interval_linetype = 'Override for `linetype`: the line type of the interval.'
),
"Point-specific color and line override aesthetics" = list(
point_fill = 'Override for `fill`: the fill color of the point.',
point_colour = '(or `point_color`) Override for `colour`/`color`: the outline color of the point.',
point_alpha = 'Override for `alpha`: the opacity of the point.',
point_size = 'Override for `size`: the size of the point.'
),
"Deprecated aesthetics" = list(
slab_size = 'Use `slab_linewidth`.',
interval_size = 'Use `interval_linewidth`.'
)
),
default_aes = aes(
# default datatype is slab (other valid value is "interval" for points/intervals)
datatype = "slab",
# shared aesthetics
alpha = NULL,
# shared point and interval aesthetics
colour = NULL,
colour_ramp = NULL,
# shared slab and interval aesthetics
linetype = NULL,
# shared point and slab aesthetics
fill = NULL,
# point aesthetics
shape = NULL,
stroke = NULL,
size = NULL,
point_colour = NULL, # falls back to colour
point_fill = NULL, # falls back to fill
point_alpha = NULL, # falls back to alpha
point_size = NULL, # falls back to size
# interval aesthetics
linewidth = NULL, # falls back to interval_size (dep) then size
interval_colour = NULL, # falls back to colour
interval_alpha = NULL, # falls back to alpha
interval_size = NULL, # deprecated (use linewidth)
interval_linetype = NULL, # falls back to linetype
# slab aesthetics
slab_size = NULL, # deprecated
slab_linewidth = NULL, # falls back to slab_size (dep)
slab_colour = NULL, # no fallback
slab_fill = NULL, # falls back to fill
slab_alpha = NULL, # falls back to alpha
slab_linetype = NULL, # falls back to linetype
fill_ramp = NULL,
# scale and positioning aesthetics
side = "topright",
scale = 0.9,
justification = NULL
),
# default aesthetics as they will actually be set (here or in the key)
# this is different from default_aes (above) so that we can identify what
# aesthetics are *actually* being asked for when creating the key
default_key_aes = aes(
alpha = NA_real_,
colour = "black",
linetype = "solid",
fill = "gray65",
shape = 19,
stroke = 0.75,
size = 1,
slab_size = 1,
slab_colour = NA
),
required_aes = "x|y",
optional_aes = c(
"ymin", "ymax", "xmin", "xmax", "width", "height", "thickness"
),
# workaround (#84)
override_slab_aesthetics = function(self, ...) override_slab_aesthetics(self, ...),
override_point_aesthetics = function(self, ...) override_point_aesthetics(self, ...),
override_interval_aesthetics = function(self, ...) override_interval_aesthetics(self, ...),
## params ------------------------------------------------------------------
param_docs = defaults(list(
# SLAB PARAMS
normalize = glue_doc('
How to normalize heights of functions input to the `thickness` aesthetic. One of:
\\itemize{
\\item `"all"`: normalize so that the maximum height across all data is `1`.
\\item `"panels"`: normalize within panels so that the maximum height in each panel is `1`.
\\item `"xy"`: normalize within the x/y axis opposite the `orientation` of this geom so
that the maximum height at each value of the opposite axis is `1`.
\\item `"groups"`: normalize within values of the opposite axis and within each
group so that the maximum height in each group is `1`.
\\item `"none"`: values are taken as is with no normalization (this should probably
only be used with functions whose values are in \\[0,1\\], such as CDFs).
}
For a comprehensive discussion and examples of slab scaling and normalization, see the
[`thickness` scale article](https://mjskay.github.io/ggdist/articles/thickness.html).
'),
fill_type = glue_doc('
What type of fill to use when the fill color or alpha varies within a slab. One of:
\\itemize{
\\item `"segments"`: breaks up the slab geometry into segments for each unique combination of fill color and
alpha value. This approach is supported by all graphics devices and works well for sharp cutoff values,
but can give ugly results if a large number of unique fill colors are being used (as in gradients,
like in [stat_gradientinterval()]).
\\item `"gradient"`: a `grid::linearGradient()` is used to create a smooth gradient fill. This works well for
large numbers of unique fill colors, but requires R >= 4.1 and is not yet supported on all graphics devices.
As of this writing, the `png()` graphics device with `type = "cairo"`, the `svg()` device, the `pdf()`
device, and the `ragg::agg_png()` devices are known to support this option. On R < 4.1, this option
will fall back to `fill_type = "segments"` with a message.
\\item `"auto"`: attempts to use `fill_type = "gradient"` if support for it can be auto-detected. On R >= 4.2,
support for gradients can be auto-detected on some graphics devices; if support is not detected, this
option will fall back to `fill_type = "segments"` (in case of a false negative, `fill_type = "gradient"`
can be set explicitly). On R < 4.2, support for gradients cannot be auto-detected, so this will always
fall back to `fill_type = "segments"`, in which case you can set `fill_type = "gradient"` explicitly
if you are using a graphics device that support gradients.
}
'),
# INTERVAL PARAMS
interval_size_domain = glue_doc('
A length-2 numeric vector giving the minimum and maximum of the values of the `size` and `linewidth` aesthetics
that will be translated into actual sizes for intervals drawn according to `interval_size_range` (see the
documentation for that argument.)
'),
interval_size_range = glue_doc('
A length-2 numeric vector. This geom scales the raw size aesthetic values when drawing interval and point
sizes, as they tend to be too thick when using the default settings of [scale_size_continuous()], which give
sizes with a range of `c(1, 6)`. The `interval_size_domain` value indicates the input domain of raw size
values (typically this should be equal to the value of the `range` argument of the [scale_size_continuous()]
function), and `interval_size_range` indicates the desired output range of the size values (the min and max of
the actual sizes used to draw intervals). Most of the time it is not recommended to change the value of this
argument, as it may result in strange scaling of legends; this argument is a holdover from earlier versions
that did not have size aesthetics targeting the point and interval separately. If you want to adjust the
size of the interval or points separately, you can also use the `linewidth` or `point_size`
aesthetics; see [sub-geometry-scales].
'),
fatten_point = glue_doc('
A multiplicative factor used to adjust the size of the point relative to the size of the
thickest interval line. If you wish to specify point sizes directly, you can also use the `point_size`
aesthetic and [scale_point_size_continuous()] or [scale_point_size_discrete()]; sizes
specified with that aesthetic will not be adjusted using `fatten_point`.
'),
arrow = '[grid::arrow()] giving the arrow heads to use on the interval, or `NULL` for no arrows.',
# SUB_GEOMETRY FLAGS
show_slab = 'Should the slab portion of the geom be drawn?',
show_point = 'Should the point portion of the geom be drawn?',
show_interval = 'Should the interval portion of the geom be drawn?',
# GUIDES
subguide = glue_doc('
Sub-guide used to annotate the `thickness` scale. One of:
\\itemize{
\\item A function that takes a `scale` argument giving a [ggplot2::Scale]
object and an `orientation` argument giving the orientation of the
geometry and then returns a [grid::grob] that will draw the axis
annotation, such as [subguide_axis()] (to draw a traditional axis) or
[subguide_none()] (to draw no annotation). See [subguide_axis()]
for a list of possibilities and examples.
\\item A string giving the name of such a function when prefixed
with `"subguide"`; e.g. `"axis"` or `"none"`.
}
')
), AbstractGeom$param_docs),
default_params = list(
orientation = NA,
normalize = "all",
fill_type = "segments",
interval_size_domain = c(1, 6),
interval_size_range = c(0.6, 1.4),
fatten_point = 1.8,
arrow = NULL,
show_slab = TRUE,
show_point = TRUE,
show_interval = TRUE,
subguide = "none",
na.rm = FALSE
),
deprecated_params = union(c(
"size_domain", "size_range"
), AbstractGeom$deprecated_params),
orientation_options = defaults(list(
main_is_orthogonal = TRUE, range_is_orthogonal = TRUE, group_has_equal = TRUE, main_is_optional = TRUE
), AbstractGeom$orientation_options),
## other methods -----------------------------------------------------------
setup_data = function(self, data, params) {
data = ggproto_parent(AbstractGeom, self)$setup_data(data, params)
define_orientation_variables(params$orientation)
# when we are missing a main aesthetic (e.g. the y aes in a horizontal orientation),
# fill it in with 0 so that we can still draw stuff
data[[y]] = data[[y]] %||% 0
data$datatype = data[["datatype"]] %||% self$default_aes[["datatype"]]
# figure out the bounding rectangles for each group
# this is necessary so that the bounding box is correct for
# positions to work (e.g. position_dodge, etc)
data[[height]] = params[[height]] %||% data[[height]] %||%
# TODO: can drop as.numeric here if https://github.com/tidyverse/ggplot2/issues/5709 is fixed
resolution(as.numeric(data[[y]]), FALSE)
# determine bounding boxes based on justification: position
# the min/max bounds around y such that y is at the correct
# justification relative to the bounds
justification = get_justification(
params$justification %||% data[["justification"]],
params$side %||% data[["side"]] %||% self$default_aes$side,
params$orientation
)
data[[ymin]] = data[[y]] - justification * data[[height]]
data[[ymax]] = data[[y]] + (1 - justification) * data[[height]]
data
},
# workaround (#84)
draw_key = function(self, ...) draw_key_slabinterval_(self, ...),
draw_key_slab = function(self, ...) draw_key_slab_(self, ...),
draw_key_point = function(self, ...) draw_key_point_(self, ...),
draw_key_interval = function(self, ...) draw_key_interval_(self, ...),
# workaround (#84)
draw_slabs = function(self, ...) draw_slabs(self, ...),
draw_pointintervals = function(self, ...) draw_pointintervals(self, ...),
draw_layer = function(self, data, params, layout, coord) {
define_orientation_variables(params$orientation)
# normalize thickness according to what groups the user wants to scale it within
# must do this here: not setup_data, so it happens after the thickness scale
# has been applied; and not draw_panel, because normalization may be applied
# across panels.
switch(params$normalize,
all = {
# normalize so max height across all data is 1
# this preserves slabs across groups in slab plots
data = normalize_thickness(data)
},
panels = ,
xy = ,
groups = {
# normalize so height in each group or panel is 1
normalization_groups = switch(params$normalize,
panels = "PANEL",
xy = c("PANEL", y),
groups = c("PANEL", y, "group")
)
data = ddply_(data, normalization_groups, normalize_thickness)
},
none = {
# ensure thickness is a thickness-type vector so it is not normalized again
data$thickness = normalize_thickness(as_thickness(data$thickness))
},
stop0('`normalize` must be "all", "panels", "xy", groups", or "none", not "', params$normalize, '"')
)
ggproto_parent(AbstractGeom, self)$draw_layer(data, params, layout, coord)
},
draw_panel = function(
self, data, panel_params, coord,
orientation = self$default_params$orientation,
show_slab = self$default_params$show_slab,
show_point = self$default_params$show_point,
show_interval = self$default_params$show_interval,
na.rm = self$default_params$na.rm,
...
) {
define_orientation_variables(orientation)
# provide defaults for color aesthetics --- we do this here because
# doing it with default_aes makes the scales very busy (as all of
# these elements get drawn even if they aren't mapped). By
# setting the defaults here we can then check if these are present
# in draw_key and not draw them if they aren't mapped.
for (aesthetic in names(self$default_key_aes)) {
data[[aesthetic]] = data[[aesthetic]] %||% self$default_key_aes[[aesthetic]]
}
# recover height: position_dodge adjusts ymax/ymin but not height
data[[height]] = data[[ymax]] - data[[ymin]]
data$justification = get_justification(data[["justification"]], data[["side"]], orientation)
slab_grobs = if (show_slab && !is.null(data$thickness)) {
# thickness values were provided, draw the slabs
s_data = data[data$datatype == "slab",]
if (nrow(s_data) > 0) {
self$draw_slabs(s_data, panel_params, coord,
orientation = orientation,
na.rm = na.rm,
...
)
}
}
point_interval_grobs = if (show_interval) {
self$draw_pointintervals(data[data$datatype == "interval",], panel_params, coord,
orientation = orientation,
show_point = show_point,
na.rm = na.rm,
...
)
}
ggname("geom_slabinterval",
do.call(grobTree, c(list(), slab_grobs, point_interval_grobs))
)
}
)
#' @rdname geom_slabinterval
#' @export
geom_slabinterval = make_geom(GeomSlabinterval)
# side and justification calculations -------------------------------------
switch_side = function(side, orientation, topright, bottomleft, both) {
switch(orientation,
y = ,
horizontal = switch(side,
top = ,
topright = ,
topleft = ,
right = topright,
bottom = ,
bottomleft = ,
bottomright = ,
left = bottomleft,
both = both,
stop0("Unknown side: ", deparse0(side))
),
x = ,
vertical = switch(side,
right = ,
topright = ,
bottomright = ,
top = topright,
left = ,
topleft = ,
bottomleft = ,
bottom = bottomleft,
both = both,
stop0("Unknown side: ", deparse0(side))
),
stop0("Unknown orientation: ", deparse0(orientation))
)
}
# vectorized version of switch_side
case_when_side = function(side, orientation, topright, bottomleft, both) {
# must make sure side and orientation are the same length as ifelse returns
# a result of the same length as the first arg only
common_length = max(length(side), length(orientation))
side = rep_len(side, length.out = common_length)
orientation = rep_len(orientation, length.out = common_length)
ifelse(
orientation %in% c("y", "horizontal"),
ifelse(
side %in% c("top", "topright", "topleft", "right"),
topright,
ifelse(
side %in% c("bottom", "bottomleft", "bottomright", "left"),
bottomleft,
both
)
),
# orientation is "vertical" or "x"
ifelse(
side %in% c("right", "topright", "bottomright", "top"),
topright,
ifelse(
side %in% c("left", "topleft", "bottomleft", "bottom"),
bottomleft,
both
)
)
)
}
get_justification = function(justification, side, orientation) {
if (is.null(justification)) {
case_when_side(side, orientation,
topright = 0,
bottomleft = 1,
both = 0.5
)
} else {
justification
}
}
# gradient helpers --------------------------------------------------------
#' groups slab data into contiguous components based on (usually) fill, colour, and alpha aesthetics,
#' interpolating values ymin/ymax values at the cutpoints, then returns the necessary data frame
#' (depending on `side`) that has top, bottom, or both sides to it
#' @param slab_data a data frame containing data for a "slab", which should at
#' least include `x`, `y`, `thickness`, and either `xmin`/`xmax` or `ymin`/`ymax`,
#' depending on `orientation`.
#' @param aesthetics the aesthetics to group the slabs by. Consecutive runs of
#' equal values of all of these aesthetics are grouped together. At cutpoints
#' between consecutive runs, the `x`/`ymin`/`ymax` (or `y`/`xmin`/`xmax`,
#' depending on `orientation`) values are interpolated so that slabs just touch.
#' @param orientation orientation of the slab
#' @param side side of the slab
#' @noRd
group_slab_data_by = function(
slab_data,
aesthetics = c("fill", "colour", "alpha"),
orientation = "horizontal",
side = "topright"
) {
define_orientation_variables(orientation)
aesthetics = intersect(aesthetics, names(slab_data))
groups_factor = factor(do.call(paste, slab_data[, aesthetics]))
if (nlevels(groups_factor) > 1) {
# need to split into groups based on varying aesthetics
groups = as.integer(groups_factor)
n = length(groups)
last_in_group = groups != c(groups[-1], groups[[n]])
first_in_group = groups != c(groups[[1]], groups[-n])
slab_data$group = cumsum(first_in_group)
# we want the two rows on each side of every cutpoint, row i and row j = i + 1
new_row__i = slab_data[last_in_group,]
new_row__j = slab_data[first_in_group,]
new_x = (new_row__i[[x]] + new_row__j[[x]]) / 2
new_ymin = (new_row__i[[ymin]] + new_row__j[[ymin]]) / 2
new_ymax = (new_row__i[[ymax]] + new_row__j[[ymax]]) / 2
new_row__i[[x]] = new_x
new_row__i[[ymin]] = new_ymin
new_row__i[[ymax]] = new_ymax
new_row__j[[x]] = new_x
new_row__j[[ymin]] = new_ymin
new_row__j[[ymax]] = new_ymax
# now we bind things with the new j rows at the beginning (they were first in each
# group) and the new i rows at the end (they were last). This ensures that when the rows
# are pulled out to draw a given group, they are in order within that group
slab_data = vec_rbind(
new_row__j,
slab_data,
new_row__i
)
}
# only calculate top / bottom as needed depending on `side`
topright = function() {
slab_data[[y]] = slab_data[[ymax]]
slab_data
}
bottomleft = function() {
slab_data = slab_data[rev(seq_len(nrow(slab_data))), ]
slab_data[[y]] = slab_data[[ymin]]
slab_data
}
switch_side(side, orientation,
topright = topright(),
bottomleft = bottomleft(),
both = vec_rbind(topright(), bottomleft())
)
}
# avoid NOTE on R < 4.1 for the use of linearGradient below
if (getRversion() < "4.1") globalVariables("linearGradient")
#' construct a linearGradient() that can be used as a fill based on the fill
#' and alpha aesthetics of the provided data
#' @noRd
make_gradient_fill = function(slab_data, orientation = "horizontal") {
define_orientation_variables(orientation)
x1 = paste0(x, "1")
y1 = paste0(y, "1")
x2 = paste0(x, "2")
y2 = paste0(y, "2")
x_min = min(slab_data[[x]])
x_max = max(slab_data[[x]])
gradient_args = list(
colours = alpha(slab_data$fill, slab_data$alpha),
stops = (slab_data[[x]] - x_min) / (x_max - x_min)
)
# x1 / x2 are relative to the bounds of the grob, hence 0 / 1
gradient_args[[x1]] = 0
gradient_args[[x2]] = 1
gradient_args[[y1]] = 0.5
gradient_args[[y2]] = 0.5
do.call(linearGradient, gradient_args)
}
#' draw a polygon grob --- based on ggplot2::GeomPolygon$draw_panel(), but
#' allows for linearGradient fills
#' @noRd
draw_polygon = function(data, panel_params, coord, fill = NULL) {
n = nrow(data)
# NOTE: this condition should always be false given where draw_polygon()
# is currently used (after group_slab_data_by(), which returns data in pairs)
# but leaving it in for safety and setting nocov
if (n == 1) return(zeroGrob()) # nocov
munched = coord_munch(coord, data, panel_params)
# Sort by group to make sure that colors, fill, etc. come in same order
munched = munched[order(munched$group), ]
# For gpar(), there is one entry per polygon (not one entry per point).
# We'll pull the first value from each group, and assume all these values
# are the same within each group.
first_idx = !duplicated(munched$group)
first_rows = munched[first_idx, ]
ggname(
"geom_polygon",
polygonGrob(
munched$x, munched$y, default.units = "native",
id = munched$group,
gp = gpar(
col = first_rows$colour,
fill = fill %||% alpha(first_rows[["fill"]], first_rows[["alpha"]]),
lwd = first_rows$linewidth * .pt,
lty = first_rows$linetype
)
)
)
}
#'@importFrom cli cli_warn cli_abort
switch_fill_type = function(fill_type, segments, gradient, call = caller_env()) {
if (getRversion() < "4.1.0" && fill_type == "gradient") { # nocov start
cli_warn(c(
'{.code fill_type = "gradient"} is not supported in R < 4.1.0.',
'i' = 'Falling back to {.code fill_type = "segments"}.',
'i' = 'See the documentation for {.arg fill_type} in
{.fun ggdist::geom_slabinterval} for more information.'
))
fill_type = "segments"
} else if (getRversion() < "4.1.0" && fill_type == "auto") {
fill_type = "segments"
} # nocov end
switch(fill_type,
segments = segments,
gradient = {
tryCatch({
check_device("gradients", maybe = TRUE, call = call)
}, warning = function(e) { # nocov start
cli_warn(
c(
'{.code fill_type = "gradient"} does not appear to be supported by the
current graphics device.',
'i' = 'Attempting to use gradient fill type anyway.',
'>' = 'If the gradient is displayed correctly, then this warning is
likely a false positive caused by the graphics device failing to
properly report its support for the {.code "LinearGradient"} pattern
via {.fun grDevices::dev.capabilities}. Consider reporting a bug to
the author of the graphics device.',
'>' = 'If the gradient is not displayed correctly, consider switching
to a graphics device that supports gradients, or use
{.code fill_type = "segments"} instead.',
'i' = 'For more information, see the documentation for {.arg fill_type} in
{.fun ggdist::geom_slabinterval} or the documentation for
{.fun ggplot2::check_device}.'
),
call = call,
class = "ggdist_gradients_not_supported",
parent = e
)
}) # nocov end
gradient
},
auto = {
tryCatch({
check_device("gradients", maybe = FALSE, call = call)
gradient
}, warning = function(e) { # nocov start
cli_warn(
c(
'{.code fill_type = "gradient"} is not supported by the current graphics device.',
'i' = 'Falling back to {.code fill_type = "segments"}.',
'>' = 'If you believe your current graphics device {.emph does} support
{.code fill_type = "gradient"} but auto-detection failed, try setting
{.code fill_type = "gradient"} explicitly. If this causes the gradient to display
correctly, then this warning is likely a false positive caused by
the graphics device failing to properly report its support for the
{.code "LinearGradient"} pattern via {.fun grDevices::dev.capabilities}.
Consider reporting a bug to the author of the graphics device.',
'i' = 'For more information, see the documentation for {.arg fill_type} in
{.fun ggdist::geom_slabinterval} or the documentation for
{.fun ggplot2::check_device}.'
),
call = call,
class = "ggdist_gradients_not_supported",
parent = e
)
segments
}) # nocov end
},
cli_abort(c(
'Unknown {.arg fill_type}: {.code {deparse0(fill_type)}}',
'i' = '{.arg fill_type} should be {.code "segments"}, {.code "gradient"}, or
{.code "auto"}.'
))
)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.