Nothing
## ----chunk_options, include=FALSE---------------------------------------------
in_pkgdown = requireNamespace("pkgdown", quietly = TRUE) && pkgdown::in_pkgdown()
# image dimensions
if (in_pkgdown) {
tiny_width = 5.5
tiny_height = 3 + 2/3
small_width = med_width = 6.75
small_height = med_height = 4.5
large_width = 8
large_height = 5.25
} else {
tiny_width = 5
tiny_height = 3 + 1/3
small_width = 5
small_height = 3 + 1/3
med_width = 5
med_height = 3 + 1/3
large_width = 5.5
large_height = 2/3
}
knitr::opts_chunk$set(
fig.width = small_width,
fig.height = small_height
)
# graphics device
if (requireNamespace("ragg", quietly = TRUE) && in_pkgdown) {
knitr::opts_chunk$set(
dev = "ragg_png"
)
} else if (capabilities("cairo") && Sys.info()[['sysname']] != "Darwin") {
knitr::opts_chunk$set(
dev = "png",
dev.args = list(type = "cairo")
)
}
# png compression for CRAN
if (!in_pkgdown) {
knitr::knit_hooks$set(pngquant = knitr::hook_pngquant)
knitr::opts_chunk$set(pngquant = "--speed=1 --quality=50")
}
## ----setup, message = FALSE, warning = FALSE----------------------------------
library(dplyr)
library(tidyr)
library(ggdist)
library(ggplot2)
library(broom)
library(distributional)
theme_set(theme_ggdist())
## ----hidden_options, include=FALSE----------------------------------------------------------------
.old_options = options(width = 100)
## ----data_gen-------------------------------------------------------------------------------------
set.seed(5)
n = 10
n_condition = 5
ABC =
tibble(
condition = rep(c("A","B","C","D","E"), n),
response = rnorm(n * 5, c(0,1,2,1,-1), 0.5)
)
## ----data_plot, fig.width = med_width, fig.height = med_height/1.5--------------------------------
ABC %>%
ggplot(aes(x = response, y = condition)) +
geom_point(alpha = 0.5) +
ylab("condition")
## ----m_ABC----------------------------------------------------------------------------------------
m_ABC = lm(response ~ condition, data = ABC)
## ----m_ABC_summary--------------------------------------------------------------------------------
summary(m_ABC)
## ----m_ABC_coefs----------------------------------------------------------------------------------
tidy(m_ABC)
## ----halfeye, fig.width = tiny_width, fig.height = tiny_height------------------------------------
m_ABC %>%
tidy() %>%
ggplot(aes(y = term)) +
stat_halfeye(
aes(xdist = dist_student_t(df = df.residual(m_ABC), mu = estimate, sigma = std.error))
)
## ----halfeye_with_data, fig.width = tiny_width, fig.height = tiny_height--------------------------
ABC %>%
expand(condition) %>%
augment(m_ABC, newdata = ., se_fit = TRUE) %>%
ggplot(aes(y = condition)) +
stat_halfeye(
aes(xdist = dist_student_t(df = df.residual(m_ABC), mu = .fitted, sigma = .se.fit)),
scale = .5
) +
# we'll add the data back in too (scale = .5 above adjusts the halfeye height so
# that the data fit in as well)
geom_point(aes(x = response), data = ABC, pch = "|", size = 2, position = position_nudge(y = -.15))
## ----gradientinterval, fig.width = tiny_width, fig.height = tiny_height---------------------------
ABC %>%
expand(condition) %>%
augment(m_ABC, newdata = ., se_fit = TRUE) %>%
ggplot(aes(y = condition)) +
stat_gradientinterval(
aes(xdist = dist_student_t(df = df.residual(m_ABC), mu = .fitted, sigma = .se.fit)),
scale = .5, fill_type = "gradient"
)
## ----ccdfinterval, fig.width = tiny_width, fig.height = tiny_height-------------------------------
ABC %>%
expand(condition) %>%
augment(m_ABC, newdata = ., se_fit = TRUE) %>%
ggplot(aes(y = condition)) +
stat_ccdfinterval(
aes(xdist = dist_student_t(df = df.residual(m_ABC), mu = .fitted, sigma = .se.fit))
)
## ----dotplot, fig.width = tiny_width, fig.height = tiny_height------------------------------------
ABC %>%
expand(condition) %>%
augment(m_ABC, newdata = ., se_fit = TRUE) %>%
ggplot(aes(y = condition)) +
stat_dots(
aes(xdist = dist_student_t(df = df.residual(m_ABC), mu = .fitted, sigma = .se.fit)),
quantiles = 100
)
## ----m_mpg----------------------------------------------------------------------------------------
m_mpg = lm(mpg ~ hp * cyl, data = mtcars)
## ----lineribbon, fig.width = tiny_width, fig.height = tiny_height---------------------------------
mtcars %>%
group_by(cyl) %>%
expand(hp = seq(min(hp), max(hp), length.out = 101)) %>%
augment(m_mpg, newdata = ., se_fit = TRUE) %>%
ggplot(aes(x = hp, fill = ordered(cyl), color = ordered(cyl))) +
stat_lineribbon(
aes(ydist = dist_student_t(df = df.residual(m_mpg), mu = .fitted, sigma = .se.fit)),
alpha = 1/4
) +
geom_point(aes(y = mpg), data = mtcars) +
scale_fill_brewer(palette = "Set2") +
scale_color_brewer(palette = "Dark2") +
labs(
color = "cyl",
fill = "cyl",
y = "mpg"
)
## ----lineribbon_lightened, fig.width = tiny_width, fig.height = tiny_height-----------------------
mtcars %>%
group_by(cyl) %>%
expand(hp = seq(min(hp), max(hp), length.out = 101)) %>%
augment(m_mpg, newdata = ., se_fit = TRUE) %>%
ggplot(aes(x = hp, color = ordered(cyl))) +
stat_lineribbon(aes(
ydist = dist_student_t(df = df.residual(m_mpg), mu = .fitted, sigma = .se.fit),
fill = ordered(cyl),
fill_ramp = after_stat(level)
)) +
geom_point(aes(y = mpg), data = mtcars) +
scale_fill_brewer(palette = "Set2") +
scale_color_brewer(palette = "Dark2") +
labs(
color = "cyl",
fill = "cyl",
y = "mpg"
)
## ----reset_options, include=FALSE---------------------------------------------
options(.old_options)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.