Nothing
.ggemmeans_zi_predictions <- function(model,
model_frame,
preds,
ci.lvl,
terms,
cleaned_terms,
value_adjustment,
condition,
nsim = 1000,
type = "fixed") {
prdat <- exp(preds$x1$emmean) * (1 - stats::plogis(preds$x2$emmean))
# compute ci, two-ways
if (!is.null(ci.lvl) && !is.na(ci.lvl))
ci <- (1 + ci.lvl) / 2
else
ci <- 0.975
# degrees of freedom
dof <- .get_df(model)
tcrit <- stats::qt(ci, df = dof)
# data grid
newdata <- .data_grid(
model = model,
model_frame = model_frame,
terms = terms,
value_adjustment = value_adjustment,
factor_adjustment = FALSE,
show_pretty_message = FALSE,
condition = condition
)
# 2nd data grid, reasons see below
data_grid <- .data_grid(
model = model,
model_frame = model_frame,
terms = terms,
value_adjustment = value_adjustment,
show_pretty_message = FALSE,
condition = condition,
emmeans.only = FALSE,
verbose = FALSE
)
# Since the zero inflation and the conditional model are working in "opposite
# directions", confidence intervals can not be derived directly from the
# "predict()"-function. Thus, confidence intervals for type = "zero_inflated" are
# based on quantiles of simulated draws from a multivariate normal distribution
# (see also _Brooks et al. 2017, pp.391-392_ for details).
prdat.sim <- .simulate_zi_predictions(model, newdata, nsim, terms, value_adjustment, condition)
if (is.null(prdat.sim)) {
insight::format_error(
"Predicted values could not be computed. Try reducing number of simulation, using argument `nsim` (e.g. `nsim = 100`)" # nolint
)
}
# we need two data grids here: one for all combination of levels from the
# model predictors ("newdata"), and one with the current combinations only
# for the terms in question ("data_grid"). "sims" has always the same
# number of rows as "newdata", but "data_grid" might be shorter. So we
# merge "data_grid" and "newdata", add mean and quantiles from "sims"
# as new variables, and then later only keep the original observations
# from "data_grid" - by this, we avoid unequal row-lengths.
sims <- exp(prdat.sim$cond) * (1 - stats::plogis(prdat.sim$zi))
prediction_data <- .join_simulations(data_grid, newdata, prdat, sims, ci, cleaned_terms)
if (type == "zero_inflated_random") {
revar <- .get_residual_variance(model)
# get link-function and back-transform fitted values
# to original scale, so we compute proper CI
if (!is.null(revar)) {
lf <- insight::link_function(model)
prediction_data$conf.low <- exp(lf(prediction_data$conf.low) - tcrit * sqrt(revar))
prediction_data$conf.high <- exp(lf(prediction_data$conf.high) + tcrit * sqrt(revar))
prediction_data$std.error <- sqrt(prediction_data$std.error^2 + revar)
}
}
prediction_data
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.