Nothing
.join_simulations <- function(prediction_data, newdata, prdat, sims, ci, clean_terms) {
# after "bootstrapping" confidence intervals by simulating from the
# multivariate normal distribution, we need to prepare the data and
# calculate "bootstrapped" estimates and CIs.
prediction_data$sort__id <- seq_len(nrow(prediction_data))
column_matches <- sapply(colnames(prediction_data), function(.x) {
any(unique(prediction_data[[.x]]) %in% newdata[[.x]])
})
# we need two data grids here: one for all combination of levels from the
# model predictors ("newdata"), and one with the current combinations only
# for the terms in question ("prediction_data"). "sims" has always the same
# number of rows as "newdata", but "prediction_data" might be shorter. So we
# merge "prediction_data" and "newdata", add mean and quantiles from "sims"
# as new variables, and then later only keep the original observations
# from "prediction_data" - by this, we avoid unequal row-lengths.
join_by <- colnames(prediction_data)[column_matches]
prediction_data <- merge(newdata, prediction_data, by = join_by, all = TRUE, sort = FALSE)
prediction_data$predicted <- rowMeans(sims)
prediction_data$conf.low <- apply(sims, 1, stats::quantile, probs = 1 - ci)
prediction_data$conf.high <- apply(sims, 1, stats::quantile, probs = ci)
prediction_data$std.error <- apply(sims, 1, stats::sd)
# group_by() changes the order of rows / variables in "prediction_data", however
# we later add back the original predictions "prdat" (see below), which
# correspond to the *current* sorting of prediction_data. So we add a dummy-ID,
# which we use to restore the original sorting of prediction_data later...
prediction_data <- prediction_data[!is.na(prediction_data$sort__id), , drop = FALSE]
prediction_data <- cbind(
stats::aggregate(
prediction_data[c("predicted", "conf.low", "conf.high", "std.error")],
by = prediction_data[clean_terms],
FUN = mean,
na.rm = TRUE
),
id = prediction_data$sort__id
)
rownames(prediction_data) <- NULL
if (length(clean_terms) == 1) {
prediction_data <- prediction_data[order(prediction_data[[1]]), , drop = FALSE]
} else if (length(clean_terms) == 2) {
prediction_data <- prediction_data[order(prediction_data[[1]], prediction_data[[2]]), , drop = FALSE]
} else if (length(clean_terms) == 3) {
prediction_data <- prediction_data[order(prediction_data[[1]], prediction_data[[2]], prediction_data[[3]]), , drop = FALSE] # nolint
} else if (length(clean_terms) == 4) {
prediction_data <- prediction_data[order(prediction_data[[1]], prediction_data[[2]], prediction_data[[3]], prediction_data[[4]]), , drop = FALSE] # nolint
}
# we use the predicted values from "predict(type = "reponse")", but the
# bootstrapped CI - so we need to fix a bit here. "predict(type = "reponse")"
# works as intended, but the related standard errors are not reliable (due
# to the combination of the conditional and zero-inflated model), so we need
# the simulated standard errors and CI's - but can use the "correct" predictions.
# in order to make CI and predictions match, we take the simulated CI-range
# and use the original predicted values as "center" for those CI-ranges.
if (length(prdat) == nrow(prediction_data)) {
prediction_data <- prediction_data[order(prediction_data$id), , drop = FALSE]
ci.range <- (prediction_data$conf.high - prediction_data$conf.low) / 2
prediction_data$predicted <- prdat
# fix negative CI
ci.low <- prediction_data$predicted - ci.range
neg.ci <- ci.low < 0
if (any(neg.ci)) {
ci.range[neg.ci] <- ci.range[neg.ci] - abs(ci.low[neg.ci]) - 1e-05
prediction_data$std.error[neg.ci] <- prediction_data$std.error[neg.ci] - ((abs(ci.low[neg.ci]) + 1e-05) / stats::qnorm(ci)) # nolint
}
prediction_data$conf.low <- prediction_data$predicted - ci.range
prediction_data$conf.high <- prediction_data$predicted + ci.range
prediction_data <- .remove_column(prediction_data, "id")
}
prediction_data
}
.simulate_zi_predictions <- function(model,
newdata,
nsim = 1000,
terms = NULL,
value_adjustment = NULL,
condition = NULL) {
# Since the zero inflation and the conditional model are working in "opposite
# directions", confidence intervals can not be derived directly from the
# "predict()"-function. Thus, confidence intervals for type = "zero_inflated" are
# based on quantiles of simulated draws from a multivariate normal distribution
# (see also _Brooks et al. 2017, pp.391-392_ for details).
if (inherits(model, "glmmTMB")) {
.simulate_predictions_glmmTMB(model, newdata, nsim, terms, value_adjustment, condition)
} else if (inherits(model, "MixMod")) {
.simulate_predictions_MixMod(model, newdata, nsim, terms, value_adjustment, condition)
} else {
.simulate_predictions_zeroinfl(model, newdata, nsim, terms, value_adjustment, condition)
}
}
.simulate_predictions_glmmTMB <- function(model,
newdata,
nsim,
terms = NULL,
value_adjustment = NULL,
condition = NULL) {
insight::check_if_installed("lme4")
# Since the zero inflation and the conditional model are working in "opposite
# directions", confidence intervals can not be derived directly from the
# "predict()"-function. Thus, confidence intervals for type = "zero_inflated" are
# based on quantiles of simulated draws from a multivariate normal distribution
# (see also _Brooks et al. 2017, pp.391-392_ for details).
tryCatch(
{
condformula <- lme4::nobars(stats::formula(model)[-2])
ziformula <- lme4::nobars(stats::formula(model$modelInfo$allForm$ziformula))
# if formula has a polynomial term, and this term is one that is held
# constant, model.matrix() with "newdata" will throw an error - so we
# re-build the newdata-argument by including all values for poly-terms, if
# these are hold constant.
fixes <- .rows_to_keep(model, newdata, condformula, ziformula, terms, value_adjustment, condition)
if (!is.null(fixes)) {
keep <- fixes$keep
newdata <- fixes$newdata
} else {
keep <- NULL
}
x.cond <- stats::model.matrix(condformula, newdata)
beta.cond <- lme4::fixef(model)$cond
x.zi <- stats::model.matrix(ziformula, newdata)
beta.zi <- lme4::fixef(model)$zi
cond.varcov <- insight::get_varcov(model, component = "conditional")
zi.varcov <- insight::get_varcov(model, component = "zero_inflated")
pred.condpar.psim <- .mvrnorm(n = nsim, mu = beta.cond, Sigma = cond.varcov)
pred.cond.psim <- x.cond %*% t(pred.condpar.psim)
pred.zipar.psim <- .mvrnorm(n = nsim, mu = beta.zi, Sigma = zi.varcov)
pred.zi.psim <- x.zi %*% t(pred.zipar.psim)
if (!.is_empty(keep)) {
pred.cond.psim <- pred.cond.psim[keep, , drop = FALSE]
pred.zi.psim <- pred.zi.psim[keep, , drop = FALSE]
}
list(cond = pred.cond.psim, zi = pred.zi.psim)
},
error = function(x) x,
warning = function(x) NULL,
finally = function(x) NULL
)
}
.simulate_predictions_MixMod <- function(model,
newdata,
nsim,
terms = NULL,
value_adjustment = NULL,
condition = NULL) {
insight::check_if_installed("lme4")
tryCatch(
{
condformula <- stats::formula(model, type = "fixed")
ziformula <- stats::formula(model, type = "zi_fixed")
# if formula has a polynomial term, and this term is one that is held
# constant, model.matrix() with "newdata" will throw an error - so we
# re-build the newdata-argument by including all values for poly-terms, if
# these are hold constant.
fixes <- .rows_to_keep(model, newdata, condformula, ziformula, terms, value_adjustment, condition)
if (!is.null(fixes)) {
keep <- fixes$keep
newdata <- fixes$newdata
} else {
keep <- NULL
}
x.cond <- stats::model.matrix(condformula, newdata)
beta.cond <- lme4::fixef(model, sub_model = "main")
x.zi <- stats::model.matrix(ziformula, newdata)
beta.zi <- lme4::fixef(model, sub_model = "zero_part")
cond.varcov <- insight::get_varcov(model, component = "conditional")
zi.varcov <- insight::get_varcov(model, component = "zero_inflated")
pred.condpar.psim <- .mvrnorm(n = nsim, mu = beta.cond, Sigma = cond.varcov)
pred.cond.psim <- x.cond %*% t(pred.condpar.psim)
pred.zipar.psim <- .mvrnorm(n = nsim, mu = beta.zi, Sigma = zi.varcov)
pred.zi.psim <- x.zi %*% t(pred.zipar.psim)
if (!.is_empty(keep)) {
pred.cond.psim <- pred.cond.psim[keep, , drop = FALSE]
pred.zi.psim <- pred.zi.psim[keep, , drop = FALSE]
}
list(cond = pred.cond.psim, zi = pred.zi.psim)
},
error = function(x) x,
warning = function(x) NULL,
finally = function(x) NULL
)
}
.simulate_predictions_zeroinfl <- function(model,
newdata,
nsim = 1000,
terms = NULL,
value_adjustment = NULL,
condition = NULL) {
tryCatch(
{
condformula <- stats::as.formula(paste0("~", insight::safe_deparse(stats::formula(model)[[3]][[2]])))
ziformula <- stats::as.formula(paste0("~", insight::safe_deparse(stats::formula(model)[[3]][[3]])))
# if formula has a polynomial term, and this term is one that is held
# constant, model.matrix() with "newdata" will throw an error - so we
# re-build the newdata-argument by including all values for poly-terms, if
# these are hold constant.
fixes <- .rows_to_keep(model, newdata, condformula, ziformula, terms, value_adjustment, condition)
if (!is.null(fixes)) {
keep <- fixes$keep
newdata <- fixes$newdata
} else {
keep <- NULL
}
x.cond <- stats::model.matrix(condformula, model = "count", data = newdata)
beta.cond <- stats::coef(model, model = "count")
x.zi <- stats::model.matrix(ziformula, model = "zero", data = newdata)
beta.zi <- stats::coef(model, model = "zero")
cond.varcov <- insight::get_varcov(model, component = "conditional")
zi.varcov <- insight::get_varcov(model, component = "zero_inflated")
pred.condpar.psim <- .mvrnorm(nsim, mu = beta.cond, Sigma = cond.varcov)
pred.cond.psim <- x.cond %*% t(pred.condpar.psim)
pred.zipar.psim <- .mvrnorm(nsim, mu = beta.zi, Sigma = zi.varcov)
pred.zi.psim <- x.zi %*% t(pred.zipar.psim)
if (!.is_empty(keep)) {
pred.cond.psim <- pred.cond.psim[keep, , drop = FALSE]
pred.zi.psim <- pred.zi.psim[keep, , drop = FALSE]
}
list(cond = pred.cond.psim, zi = pred.zi.psim)
},
error = function(x) x,
warning = function(x) NULL,
finally = function(x) NULL
)
}
.rows_to_keep <- function(model, newdata, condformula, ziformula, terms, value_adjustment, condition) {
# if formula has a polynomial term, and this term is one that is held
# constant, model.matrix() with "newdata" will throw an error - so we
# re-build the newdata-argument by including all values for poly-terms, if
# these are hold constant.
const.values <- attr(newdata, "constant.values")
condformula_string <- insight::safe_deparse(condformula)
ziformula_string <- insight::safe_deparse(ziformula)
keep <- NULL
if (.has_poly_term(condformula_string) || .has_poly_term(ziformula_string)) {
model_frame <- insight::get_data(model, source = "frame", verbose = FALSE)
polycondcheck <- NULL
polyzicheck <- NULL
if (.has_poly_term(condformula_string)) {
polyterm <- .get_poly_term(condformula_string)
if (polyterm %in% names(const.values)) {
polycondcheck <- polyterm
polydg <- .get_poly_degree(condformula_string)
polyvals <- paste0(
stats::quantile(model_frame[[polyterm]], probs = seq_len(polydg + 1) / (polydg + 2)),
collapse = ","
)
terms <- c(terms, sprintf("%s [%s]", polyterm, polyvals))
}
}
if (.has_poly_term(ziformula_string)) {
polyterm <- .get_poly_term(ziformula_string)
if (polyterm %in% names(const.values)) {
polyzicheck <- polyterm
polydg <- .get_poly_degree(ziformula_string)
polyvals <- paste0(
stats::quantile(model_frame[[polyterm]], probs = seq_len(polydg + 1) / (polydg + 2)),
collapse = ","
)
terms <- c(terms, sprintf("%s [%s]", polyterm, polyvals))
}
}
newdata <- .data_grid(
model = model,
model_frame = model_frame,
terms = terms,
value_adjustment = value_adjustment,
factor_adjustment = FALSE,
show_pretty_message = FALSE,
condition = condition,
verbose = FALSE
)
keep.cond <- vector("numeric")
keep.zi <- vector("numeric")
if (!is.null(polycondcheck)) {
keep.cond <- unlist(lapply(polycondcheck, function(.x) {
wm <- newdata[[.x]][which.min(abs(newdata[[.x]] - .typical_value(newdata[[.x]], fun = value_adjustment)))]
as.vector(which(newdata[[.x]] == wm))
}), use.names = FALSE)
}
if (!is.null(polyzicheck)) {
keep.zi <- unlist(lapply(polyzicheck, function(.x) {
wm <- newdata[[.x]][which.min(abs(newdata[[.x]] - .typical_value(newdata[[.x]], fun = value_adjustment)))]
as.vector(which(newdata[[.x]] == wm))
}), use.names = FALSE)
}
keep <- intersect(keep.cond, keep.zi)
if (.is_empty(keep))
keep <- unique(c(keep.cond, keep.zi))
}
if (.is_empty(keep)) return(NULL)
list(keep = keep, newdata = newdata)
}
.get_zeroinfl_gam_predictions <- function(model, newdata, nsim = 1000) {
tryCatch(
{
mm <- stats::model.matrix(model, data = newdata)
linpred <- attr(mm, "lpi", exact = TRUE)
cond <- linpred[[1]]
zi <- linpred[[2]]
x.cond <- mm[, cond]
x.zi <- mm[, zi]
beta.cond <- stats::coef(model)[cond]
beta.zi <- stats::coef(model)[zi]
varcov.cond <- stats::vcov(model)[cond, cond]
varcov.zi <- stats::vcov(model)[zi, zi]
psim.cond <- .mvrnorm(nsim, mu = beta.cond, Sigma = varcov.cond)
pred.cond <- x.cond %*% t(psim.cond)
psim.zi <- .mvrnorm(nsim, mu = beta.zi, Sigma = varcov.zi)
pred.zi <- x.zi %*% t(psim.zi)
list(cond = pred.cond, zi = pred.zi)
},
error = function(x) x,
warning = function(x) NULL,
finally = function(x) NULL
)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.