Nothing
# "factor_adjustment" indicates if factors should be held constant or not
# need to be false for computing std.error for merMod objects
# value_adjustment is the function to calculate at which value non-focal
# terms are held constant (mean, median, ...)
.data_grid <- function(model,
model_frame,
terms,
value_adjustment,
factor_adjustment = TRUE,
show_pretty_message = TRUE,
condition = NULL,
emmeans.only = FALSE,
verbose = TRUE) {
# special handling for coxph
if (inherits(model, c("coxph", "coxme"))) {
surv.var <- which(colnames(model_frame) == insight::find_response(model))
model_frame <- .remove_column(model_frame, surv.var)
}
model_info <- .get_model_info(model)
# make sure we don't have arrays as variables
model_frame[] <- lapply(model_frame, function(i) if (is.array(i)) as.data.frame(i) else i)
# we may have factors converted on the fly in the formula, which are,
# however, numeric in the original data. We need to coerce to factor here,
# and back to numeric later...
on_the_fly_factors <- attributes(model_frame)$factors
model_frame[] <- lapply(model_frame, function(i) {
if (isTRUE(attributes(i)$factor)) as.factor(i) else i
})
# special handling for fixest, when "cluster" is no factor
if (inherits(model, "fixest")) {
fixest_cluster <- insight::find_variables(model)$cluster
if (!is.null(fixest_cluster)) {
for (fc in fixest_cluster) {
if (!is.factor(model_frame[[fc]])) {
model_frame[[fc]] <- as.factor(model_frame[[fc]])
}
}
}
}
# check for logical variables, might not work
logicals <- vapply(model_frame, is.logical, logical(1))
if (any(logicals)) {
insight::format_error(
"Variables of type `logical` do not work, please coerce to factor and fit the model again.",
paste0(
"The following variables in are of type logical: ",
toString(paste0("`", colnames(model_frame)[logicals], "`"))
)
)
}
# any weights?
w <- insight::get_weights(model)
if (is.null(w) || all(w == 1)) {
w <- NULL
}
# get random effects (grouping factor)
random_effect_terms <- insight::find_random(model, split_nested = TRUE, flatten = TRUE)
# clean variable names
colnames(model_frame) <- insight::clean_names(colnames(model_frame))
# get specific levels. "focal_terms" is now a names list, with the variable
# names as names, and the specified values (in []) as list elements.
focal_terms <- .get_representative_values(terms, model_frame)
# and all specified variables
all_terms <- .clean_terms(terms)
# check for character variables, might not work
characters <- vapply(model_frame[all_terms], is.character, logical(1))
if (any(characters) && verbose) {
insight::format_warning(
"Some of the focal terms are of type `character`. This may lead to unexpected results. It is recommended to convert these variables to factors before fitting the model.", # nolint
paste0(
"The following variables are of type character: ",
toString(paste0("`", all_terms[characters], "`"))
)
)
}
# check if user has any predictors with log-transformation inside
# model formula, but *not* used back-transformation "exp". Tell user
# so she's aware of the problem
offset_log_term <- tryCatch(
{
olt <- NULL
if (!inherits(model, "brmsfit") && show_pretty_message && .has_log(model)) {
any_offset_log_term <- .get_offset_log_terms(model)
# check if we have offset() in formula, with transformed variable
if (any(any_offset_log_term)) {
clean.term <- insight::find_predictors(model, effects = "all", component = "all", flatten = FALSE)
clean.term <- unlist(clean.term[c("conditional", "random", "instruments")])[any_offset_log_term]
# try to back-transform
offset_function <- .get_offset_transformation(model)
# check whether offset is transformed and *not* fixed (conditioned) at a specific value
if (identical(offset_function, "log") && !clean.term %in% names(condition)) {
if (verbose) {
insight::format_alert(
"Model uses a transformed offset term. Predictions may not be correct.",
sprintf("It is recommended to fix the offset term using the `condition` argument, e.g. `condition = c(%s = 1)`.", clean.term), # nolint
sprintf("You could also transform the offset variable before fitting the model and use `offset(%s)` in the model formula.", clean.term) # nolint
)
}
olt <- clean.term
}
}
}
olt
},
error = function(x) NULL,
warning = function(x) NULL,
finally = function(x) NULL
)
# Check if model has splines, and if so, tell user that he may use
# all values - except for gam and vgam models. "predict()" seems
# stable even for large data frame for gam/vgam. Especially for
# mixed models, computing SE and CI is very memory consuming, leading
# to memory allocation errors. That's why by default values for continuous
# variables are "prettified" to a smaller set of unique values.
use_all_values <- FALSE
# for these models, always all values are used
all_values_models <- c("Gam", "gam", "vgam", "glm", "lm", "nestedLogit",
"brmsfit", "bamlss", "gamlss", "glmx", "feglm")
# for these models, all values are used if we have splines or polynomial terms
if (.has_spline_or_poly(model) && !.uses_all_tag(terms)) {
use_all_values <- inherits(model, all_values_models)
}
# for remaining models, if not "[all]" tag is used, tell user about
# considerung using the "[all]" tag
if (verbose && !use_all_values && !.uses_all_tag(terms)) {
if (.has_splines(model)) {
insight::format_alert(sprintf(
"Model contains splines or polynomial terms. Consider using `terms=\"%s [all]\"` to get smooth plots. See also package-vignette 'Adjusted Predictions at Specific Values'.", all_terms[1] # nolint
))
show_pretty_message <- FALSE
}
if (.has_poly(model) && show_pretty_message) {
insight::format_alert(sprintf(
"Model contains polynomial or cubic / quadratic terms. Consider using `terms=\"%s [all]\"` to get smooth plots. See also package-vignette 'Adjusted Predictions at Specific Values'.", all_terms[1] # nolint
))
show_pretty_message <- FALSE
}
if (.has_trigonometry(model) && show_pretty_message) {
insight::format_alert(sprintf(
"Model contains trigonometric terms (sinus, cosinus, ...). Consider using `terms=\"%s [all]\"` to get smooth plots. See also package-vignette 'Adjusted Predictions at Specific Values'.", all_terms[1] # nolint
))
show_pretty_message <- FALSE
}
}
# find terms for which no specific at-values are given
conditional_terms <- which(!(all_terms %in% names(focal_terms)))
# prettify numeric vectors, get representative values
constant_levels <- .prettify_data(
conditional_terms = conditional_terms,
original_model_frame = model_frame,
terms = all_terms,
use_all_values = use_all_values,
show_pretty_message = show_pretty_message && model_info$is_binomial && verbose
)
names(constant_levels) <- all_terms[conditional_terms]
focal_terms <- c(focal_terms, constant_levels)
# check for monotonic terms and valid values. In case 'mo()' is used,
# and predictor is numeric, prettyfied values in the data grid are based
# on the range of the numeric variable, although only those values are allowed
# in the data grid that actually appear in the data
if (inherits(model, "brmsfit")) {
model_terms <- insight::find_terms(model, flatten = TRUE)
monotonics <- grepl("mo\\((.*)\\)", model_terms)
if (any(monotonics)) {
mo_terms <- gsub("mo\\((.*)\\)", "\\1", model_terms[monotonics])
# now check if values are valid
invalid_levels <- unlist(lapply(mo_terms, function(mt) {
if (mt %in% names(focal_terms) && mt %in% colnames(model_frame)) {
!all(model_frame[[mt]] %in% focal_terms[[mt]])
} else {
FALSE
}
}))
if (any(invalid_levels)) {
insight::format_error(
sprintf("Variable(s) %s are used as monotonic effects, however, only values that are also present in the data are allowed for predictions.", toString(mo_terms)), # nolint
"Consider converting variables used in `mo()` into (ordered) factors before fitting the model."
)
}
# we also need to remove monotonic terms from "on-the-fly" factors,
# because we need the levels from the monotonic term
on_the_fly_factors <- setdiff(on_the_fly_factors, mo_terms)
if (!length(on_the_fly_factors)) {
on_the_fly_factors <- NULL
}
}
}
## TODO check for other panelr models
offset_term <- .offset_term(model, condition, show_pretty_message)
model_predictors <- c(
insight::find_predictors(model, effects = "all", component = "all", flatten = TRUE),
offset_term
)
if (inherits(model, "wbm")) {
model_predictors <- unique(c(
insight::find_response(model),
model_predictors,
model@call_info$id,
model@call_info$wave
))
}
# check if offset term is in model frame
if (!is.null(offset_term) && !(offset_term %in% colnames(model_frame))) {
model_frame <- .add_offset_to_mf(model, model_frame, offset_term)
}
# get count of terms, and number of columns
n_predictors <- length(model_predictors)
# remove NA from values, so we don't have expanded data grid
# with missing values. this causes an error with predict()
if (any(vapply(focal_terms, anyNA, TRUE))) {
focal_terms <- lapply(focal_terms, function(.x) as.vector(stats::na.omit(.x)))
}
## TODO check, it should actually no longer happen that the values of
# "model_predictors" are not in the column names of the model frame "model_frame"
# names of predictor variables may vary, e.g. if log(x) or poly(x) etc. is used.
# so check if we have correct predictor names that also appear in model frame
## TODO brms does currently not support "terms()" generic
if (inherits(model, "wbm")) {
model_predictors <- model_predictors[model_predictors %in% colnames(model_frame)]
} else {
if (sum(!(model_predictors %in% colnames(model_frame))) > 0 && !inherits(model, c("brmsfit", "MCMCglmm"))) {
# get terms from model directly
model_predictors <- .safe(attr(stats::terms(model), "term.labels", exact = TRUE))
}
# 2nd check
if (is.null(model_predictors) || sum(!(model_predictors %in% colnames(model_frame))) > 0) {
# get terms from model frame column names
model_predictors <- colnames(model_frame)
# we may have more terms now, e.g. intercept. remove those now
if (length(model_predictors) > n_predictors) {
model_predictors <- model_predictors[2:(n_predictors + 1)]
}
}
}
# keep those, which we did not process yet
model_predictors <- model_predictors[!(model_predictors %in% names(focal_terms))]
# if we have weights, and typical value is mean, use weighted means
# as function for the typical values
if (!.is_empty(w) && length(w) == nrow(model_frame)) {
if (identical(value_adjustment, "mean")) {
value_adjustment <- "weighted.mean"
} else if (is.list(value_adjustment)) {
value_adjustment <- lapply(value_adjustment, function(x) {
if (identical(x, "mean")) {
"weighted.mean"
} else {
x
}
})
}
}
if (.is_empty(w)) {
if (identical(value_adjustment, "weighted.mean")) {
value_adjustment <- "mean"
} else if (is.list(value_adjustment)) {
value_adjustment <- lapply(value_adjustment, function(x) {
if (identical(x, "weighted.mean")) {
"mean"
} else {
x
}
})
}
}
# at this point, we have the "terms" in focal terms, but possibly in different
# order as in "terms" (because we first have terms with [] in focal terms, then
# the remaining). Here we make sure we restore the correct order
if (all(all_terms %in% names(focal_terms))) {
focal_terms <- focal_terms[all_terms]
}
# do we have variables that should be held constant at a specific value?
if (!is.null(condition) && !is.null(names(condition))) {
focal_terms <- c(focal_terms, as.list(condition))
model_predictors <- model_predictors[!(model_predictors %in% names(condition))]
}
# add all constant values to list. For those predictors that have to be
# held constant, use "typical" values - mean/median for numeric values,
# reference level for factors and most common element for character vectors
# special handling for emmeans
if (isTRUE(emmeans.only)) {
# check for log-terms, and if in focal terms, remove "0" from values
log_terms <- .which_log_terms(model)
if (!is.null(log_terms) && any(log_terms %in% names(focal_terms))) {
for (lt in log_terms) {
if (is.numeric(focal_terms[[lt]]) && any(focal_terms[[lt]] <= 0)) {
focal_terms[[lt]] <- focal_terms[[lt]][-which(focal_terms[[lt]] <= 0)]
}
}
}
# adjust constant values, special handling for emmeans only
constant_values <- lapply(model_predictors, function(x) {
pred <- model_frame[[x]]
if (!is.factor(pred) && !is.character(pred) && !x %in% random_effect_terms) {
.typical_value(
pred,
fun = value_adjustment,
weights = w,
predictor = x,
log_terms = .which_log_terms(model)
)
}
})
names(constant_values) <- model_predictors
constant_values <- .compact_list(constant_values)
} else if (factor_adjustment) {
# adjust constant values, factors set to reference level
constant_values <- lapply(model_predictors, function(x) {
pred <- model_frame[[x]]
if (is.factor(pred)) {
pred <- droplevels(pred)
}
.typical_value(
pred,
fun = value_adjustment,
weights = w,
predictor = x,
log_terms = .which_log_terms(model)
)
})
names(constant_values) <- model_predictors
} else {
# adjust constant values, use all factor levels
re.grp <- insight::find_random(model, split_nested = TRUE, flatten = TRUE)
# if factors should not be held constant (needed when computing
# std.error for merMod objects), we need all factor levels,
# and not just the typical value
constant_values <- lapply(model_predictors, function(.x) {
# get group factors from random effects
is.re.grp <- !is.null(re.grp) && .x %in% re.grp
x <- model_frame[[.x]]
# only get levels if not random effect
if (is.factor(x) && !is.re.grp) {
levels(droplevels(x))
} else {
if (is.factor(x)) x <- droplevels(x)
.typical_value(x, fun = value_adjustment, weights = w)
}
})
names(constant_values) <- model_predictors
}
# for brms-models with additional response information, we need
# also the number of trials to calculate predictions
n.trials <- NULL
if (!is.null(model_info) && model_info$is_trial && inherits(model, "brmsfit")) {
tryCatch(
{
rv <- insight::find_response(model, combine = FALSE)
# check if trials-variable is held constant at another value already
if (!(rv[2] %in% names(condition))) {
n.trials <- as.integer(stats::median(model_frame[[rv[2]]]))
if (!.is_empty(n.trials)) {
constant_values <- c(constant_values, list(n.trials))
names(constant_values)[length(constant_values)] <- rv[2]
}
}
},
error = function(x) NULL
)
}
# for MixMod, we need mean value of response as well...
if (inherits(model, c("MixMod", "MCMCglmm"))) {
constant_values <- c(constant_values, .typical_value(insight::get_response(model, verbose = FALSE)))
names(constant_values)[length(constant_values)] <- insight::find_response(model, combine = FALSE)
}
# add constant values.
focal_terms <- c(focal_terms, constant_values)
# stop here for emmeans-objects
if (isTRUE(emmeans.only)) {
# remove grouping factor of RE from constant values
# only applicable for MixMod objects
if (inherits(model, "MixMod") && !is.null(random_effect_terms) &&
!.is_empty(constant_values) && any(random_effect_terms %in% names(constant_values))) {
constant_values <- constant_values[!(names(constant_values) %in% random_effect_terms)]
}
# save names
focal_term_names <- names(focal_terms)
# restore original type
focal_terms <- lapply(focal_term_names, function(x) {
# check for consistent vector type: on-the-fly conversion of factors
if (!is.null(on_the_fly_factors) && x %in% on_the_fly_factors) {
return(.factor_to_numeric(focal_terms[[x]]))
}
# check for consistent vector type: numeric
if (is.numeric(model_frame[[x]]) && !is.numeric(focal_terms[[x]])) {
return(.factor_to_numeric(focal_terms[[x]]))
}
# check for consistent vector type: factor
if (is.factor(model_frame[[x]]) && !is.factor(focal_terms[[x]])) {
return(as.character(focal_terms[[x]]))
}
# else return original vector
focal_terms[[x]]
})
# add back names
names(focal_terms) <- focal_term_names
# save constant values as attribute
attr(focal_terms, "constant.values") <- constant_values
attr(focal_terms, "n.trials") <- n.trials
# remember if grouping "factor" is numeric. this is possibly required
# later when plotting data points for continuous predictors that are
# held constant at their mean/sd values or similar.
if (length(terms) > 1) {
attr(focal_terms, "continuous.group") <- is.numeric(focal_terms[[2]])
} else {
attr(focal_terms, "continuous.group") <- FALSE
}
return(focal_terms)
}
# create data frame with all unqiue combinations
dat <- as.data.frame(expand.grid(focal_terms, stringsAsFactors = TRUE))
# we have to check type consistency. If user specified certain value
# (e.g. "education [1,3]"), these are returned as string and coerced
# to factor, even if original vector was numeric. In this case, we have
# to coerce back these variables. Else, predict() complains that model
# was fitted with numeric, but newdata has factor (or vice versa).
datlist <- lapply(colnames(dat), function(x) {
# check for consistent vector type: numeric
if (is.numeric(model_frame[[x]]) && !is.numeric(dat[[x]])) {
return(.factor_to_numeric(dat[[x]]))
}
# check for consistent vector type: factor
if (is.factor(model_frame[[x]]) && !is.factor(dat[[x]])) {
return(as.factor(dat[[x]]))
}
# else return original vector
dat[[x]]
})
# get list names. we need to remove patterns like "log()" etc.
names(datlist) <- names(focal_terms)
datlist <- as.data.frame(datlist)
# in case we have variable names with white space, fix here
if (any(names(focal_terms) != colnames(datlist))) {
colnames(datlist) <- names(focal_terms)
}
if (inherits(model, "wbm")) {
colnames(datlist) <- names(focal_terms)
}
# check if predictions should be conditioned on random effects,
# but not on each group level. If so, set random effect to NA
# which will return predictions on a population level.
# See ?glmmTMB::predict
if (inherits(model, c("glmmTMB", "merMod", "rlmerMod", "MixMod", "brmsfit", "lme"))) {
cleaned_terms <- .clean_terms(terms)
# check if we have fixed effects as grouping factor in random effects as well...
cleaned_terms <- unique(c(cleaned_terms, insight::find_predictors(model, effects = "fixed", flatten = TRUE)))
# if so, remove from random-effects here
random_effect_terms <- random_effect_terms[!(random_effect_terms %in% cleaned_terms)]
if (!.is_empty(random_effect_terms) && !.is_empty(constant_values)) {
# need to check if predictions are conditioned on specific
# value if random effect
if (inherits(model, c("glmmTMB", "brmsfit", "MixMod"))) {
for (i in random_effect_terms) {
if (i %in% names(constant_values)) {
datlist[[i]] <- NA
constant_values[i] <- "NA (population-level)"
}
}
} else if (inherits(model, c("merMod", "rlmerMod", "lme"))) {
for (i in random_effect_terms) {
if (i %in% names(constant_values)) {
datlist[[i]] <- 0
constant_values[i] <- "0 (population-level)"
}
}
}
if (inherits(model, "rlmerMod")) {
datlist[] <- lapply(colnames(datlist), function(x) {
if (x %in% names(constant_values) && !(x %in% random_effect_terms) && is.factor(datlist[[x]])) {
levels(datlist[[x]]) <- levels(model_frame[[x]])
}
datlist[[x]]
})
}
}
}
# for numeric variables, that are coerced to factors on-the-fly via formula,
# convert back to numeric, so types match with original data. some models,
# like brms, would fail for type mismatch
if (!is.null(on_the_fly_factors)) {
on_the_fly_factors <- on_the_fly_factors[on_the_fly_factors %in% colnames(datlist)]
if (length(on_the_fly_factors)) {
for (i in on_the_fly_factors) {
datlist[[i]] <- .factor_to_numeric(datlist[[i]])
}
}
}
# save constant values as attribute
attr(datlist, "constant.values") <- constant_values
attr(datlist, "n.trials") <- n.trials
# remember if grouping "factor" is numeric. this is possibly required
# later when plotting data points for continuous predictors that are
# held constant at their mean/sd values or similar.
if (length(terms) > 1) {
attr(datlist, "continuous.group") <- is.numeric(datlist[[2]])
} else {
attr(datlist, "continuous.group") <- FALSE
}
w <- insight::find_weights(model)
if (!is.null(w) && !inherits(model, "brmsfit")) {
# don't overwrite variables
w <- setdiff(w, colnames(datlist))
# for lme, can't be NA
if (inherits(model, c("lme", "gls"))) {
datlist[w] <- 1
} else {
datlist[w] <- NA_real_
}
}
datlist
}
.add_offset_to_mf <- function(x, model_frame, offset_term) {
# first try, parent frame
dat <- .safe(eval(x$call$data, envir = parent.frame()))
if (is.null(dat)) {
# second try, global env
dat <- .safe(eval(x$call$data, envir = globalenv()))
}
if (!is.null(dat) && .obj_has_name(x$call, "subset")) {
dat <- subset(dat, subset = eval(x$call$subset))
}
tryCatch(
{
dat <- stats::na.omit(dat[c(intersect(colnames(model_frame), colnames(dat)), offset_term)])
cbind(model_frame, dat[offset_term])
},
error = function(e) {
model_frame
}
)
}
.get_model_data <- function(model) {
# get model frame
model_frame <- insight::get_data(model, source = "frame", verbose = FALSE)
# sanity check - could data be extracted from model frame?
if (is.null(model_frame)) {
model_frame <- .safe(insight::get_data(model, source = "environment", verbose = FALSE))
}
# tibbles are not supported
if (inherits(model_frame, c("tbl", "tbl_df"))) {
class(model_frame) <- "data.frame"
}
model_frame
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.