R/aes-group-order.R

#' Aesthetics: grouping
#'
#' @name aes_group_order
#' @aliases group
#'
#' @description
#' The `group` aesthetic is by default set to the interaction of all discrete variables
#' in the plot. This choice often partitions the data correctly, but when it does not,
#' or when no discrete variable is used in the plot, you will need to explicitly define the
#' grouping structure by mapping `group` to a variable that has a different value
#' for each group.
#'
#' @details
#' For most applications the grouping is set implicitly by mapping one or more
#' discrete variables to `x`, `y`, `colour`, `fill`, `alpha`, `shape`, `size`,
#' and/or `linetype`. This is demonstrated in the examples below.
#'
#' There are three common cases where the default does not display the data correctly.
#' 1. `geom_line()` where there are multiple individuals and the plot tries to
#'   connect every observation, even across individuals, with a line.
#' 1. `geom_line()` where a discrete x-position implies groups, whereas observations
#'   span the discrete x-positions.
#' 1. When the grouping needs to be different over different layers, for example
#'   when computing a statistic on all observations when another layer shows
#'   individuals.
#'
#' The examples below use a longitudinal dataset, `Oxboys`, from the nlme package to demonstrate
#' these cases. `Oxboys` records the heights (height) and centered ages (age) of 26 boys (Subject),
#' measured on nine occasions (Occasion).
#'
#' @seealso
#' * Geoms commonly used with groups: [geom_bar()], [geom_histogram()], [geom_line()]
#' * Run `vignette("ggplot2-specs")` to see an overview of other aesthetics that
#' can be modified.
#' @family aesthetics documentation
#'
#' @examples
#' \donttest{
#'
#' p <- ggplot(mtcars, aes(wt, mpg))
#' # A basic scatter plot
#' p + geom_point(size = 4)
#' # Using the colour aesthetic
#' p + geom_point(aes(colour = factor(cyl)), size = 4)
#' # Using the shape aesthetic
#' p + geom_point(aes(shape = factor(cyl)), size = 4)
#'
#' # Using fill
#' p <- ggplot(mtcars, aes(factor(cyl)))
#' p + geom_bar()
#' p + geom_bar(aes(fill = factor(cyl)))
#' p + geom_bar(aes(fill = factor(vs)))
#'
#' # Using linetypes
#' ggplot(economics_long, aes(date, value01)) +
#'   geom_line(aes(linetype = variable))
#'
#' # Multiple groups with one aesthetic
#' p <- ggplot(nlme::Oxboys, aes(age, height))
#' # The default is not sufficient here. A single line tries to connect all
#' # the observations.
#' p + geom_line()
#' # To fix this, use the group aesthetic to map a different line for each
#' # subject.
#' p + geom_line(aes(group = Subject))
#'
#' # Different groups on different layers
#' p <- p + geom_line(aes(group = Subject))
#' # Using the group aesthetic with both geom_line() and geom_smooth()
#' # groups the data the same way for both layers
#' p + geom_smooth(aes(group = Subject), method = "lm", se = FALSE)
#' # Changing the group aesthetic for the smoother layer
#' # fits a single line of best fit across all boys
#' p + geom_smooth(aes(group = 1), size = 2, method = "lm", se = FALSE)
#'
#' # Overriding the default grouping
#' # Sometimes the plot has a discrete scale but you want to draw lines
#' # that connect across groups. This is the strategy used in interaction
#' # plots, profile plots, and parallel coordinate plots, among others.
#' # For example, we draw boxplots of height at each measurement occasion.
#' p <- ggplot(nlme::Oxboys, aes(Occasion, height)) + geom_boxplot()
#' p
#' # There is no need to specify the group aesthetic here; the default grouping
#' # works because occasion is a discrete variable. To overlay individual
#' # trajectories, we again need to override the default grouping for that layer
#' # with aes(group = Subject)
#' p + geom_line(aes(group = Subject), colour = "blue")
#' }
NULL

Try the ggplot2 package in your browser

Any scripts or data that you put into this service are public.

ggplot2 documentation built on June 22, 2024, 11:35 a.m.