Nothing
#' Plot a vertical ridgeline (ridgeline rotated 90 degrees)
#'
#' Plots the sum of the `x` and `width` aesthetics versus `y`, filling the area between `x` and `x + width` with a color.
#' Just like [geom_ridgeline()], but with y and x replaced.
#'
#' @param mapping Set of aesthetic mappings created by [`aes()`] or
#' [`aes_()`]. If specified and `inherit.aes = TRUE` (the
#' default), it is combined with the default mapping at the top level of the
#' plot. You must supply `mapping` if there is no plot mapping.
#' @param data The data to be displayed in this layer. There are three
#' options:
#'
#' If `NULL`, the default, the data is inherited from the plot
#' data as specified in the call to [`ggplot()`].
#'
#' A `data.frame`, or other object, will override the plot
#' data.
#'
#' A `function` will be called with a single argument,
#' the plot data. The return value must be a `data.frame.`, and
#' will be used as the layer data.
#' @param stat The statistical transformation to use on the data for this
#' layer, as a string.
#' @param position Position adjustment, either as a string, or the result of
#' a call to a position adjustment function.
#' @param show.legend logical. Should this layer be included in the legends?
#' `NA`, the default, includes if any aesthetics are mapped.
#' `FALSE` never includes, and `TRUE` always includes.
#' @param inherit.aes If `FALSE`, overrides the default aesthetics,
#' rather than combining with them.
#' @param na.rm If `FALSE`, the default, missing values are removed with
#' a warning. If `TRUE`, missing values are silently removed.
#' @param ... other arguments passed on to [`layer()`]. These are
#' often aesthetics, used to set an aesthetic to a fixed value, like
#' `color = "red"` or `linewidth = 3`. They may also be parameters
#' to the paired geom/stat.
#'
#' @section Aesthetics:
#'
#' Required aesthetics are in bold.
#'
#' * **`x`**
#' * **`y`**
#' * **`width`** Width of the ridgeline, measured from the respective `x` value. Assumed to be positive, though this is not required.
#' * `group` Defines the grouping. Required when the dataset contains multiple distinct ridgelines. Will typically be the same
#' variable as is mapped to `x`.
#' * `scale` A scaling factor to scale the widths of the ridgelines.
#' A value of 1 indicates that the widths are taken as is. This aesthetic can be used to convert
#' `width` units into `x` units.
#' * `min_width` A width cutoff on the drawn ridgelines. All values that fall below this cutoff will be removed.
#' The main purpose of this cutoff is to remove long tails right at the baseline level, but other uses are possible.
#' The cutoff is applied before any width
#' scaling is applied via the `scale` aesthetic. Default is 0, so negative values are removed.
#' * `color` Color of the ridgeline
#' * `fill` Fill color of the area under the ridgeline
#' * `alpha` Transparency level of `fill`. Not applied to `color`. If you want transparent lines, you can set their
#' color as RGBA value, e.g. #FF0000A0 for partially transparent red.
#' * `group` Grouping, to draw multiple ridgelines from one dataset
#' * `linetype` Linetype of the ridgeline
#' * `linewidth` Line thickness
#'
#' @examples
#' library(ggplot2)
#'
#' d <- data.frame(y = rep(1:5, 3), x = c(rep(0, 5), rep(1, 5), rep(3, 5)),
#' width = c(0, 1, 3, 4, 0, 1, 2, 3, 5, 4, 0, 5, 4, 4, 1))
#' ggplot(d, aes(x, y, width = width, group = x)) + geom_vridgeline(fill="lightblue")
#'
#' ggplot(iris, aes(x=Species, y=Sepal.Width, width = after_stat(density), fill=Species)) +
#' geom_vridgeline(stat="ydensity", trim=FALSE, alpha = 0.85, scale = 2)
#'
#' @importFrom ggplot2 layer
#' @export
geom_vridgeline <- function(mapping = NULL, data = NULL, stat = "identity",
position = "identity", na.rm = FALSE, show.legend = NA,
inherit.aes = TRUE, ...) {
layer(
data = data,
mapping = mapping,
stat = stat,
geom = GeomVRidgeline,
position = position,
show.legend = show.legend,
inherit.aes = inherit.aes,
params = list(
na.rm = na.rm,
...
)
)
}
#' @rdname geom_vridgeline
#' @format NULL
#' @usage NULL
#' @importFrom ggplot2 ggproto Geom draw_key_polygon
#' @export
GeomVRidgeline <- ggproto("GeomVRidgeline", Geom,
default_aes = aes(color = "black", fill = "grey80", x = 0, linewidth = 0.5, linetype = 1,
min_width = 0, scale = 1, alpha = NA),
required_aes = c("x", "y", "width"),
setup_data = function(self, data, params) {
if (!"scale" %in% names(data)) {
if (!"scale" %in% names(params))
data <- cbind(data, scale = self$default_aes$scale)
else
data <- cbind(data, scale = params$scale)
}
if (!"min_width" %in% names(data)){
if (!"min_width" %in% names(params))
data <- cbind(data, min_width = self$default_aes$min_width)
else
data <- cbind(data, min_width = params$min_width)
}
transform(data, xmin = x, xmax = x + scale*width)
},
draw_key = draw_key_polygon,
handle_na = function(data, params) {
data
},
draw_panel = function(self, data, panel_params, coord, ...) {
groups <- split(data, factor(data$group))
# sort list so highest xmin values are in the front
# we take a shortcut here and look only at the first xmin value given
o <- order(unlist(lapply(groups, function(data){data$xmin[1]})), decreasing = TRUE)
groups <- groups[o]
grobs <- lapply(groups, function(group) {
self$draw_group(group, panel_params, coord, ...)
})
ggname(snake_class(self), gTree(
children = do.call("gList", grobs)
))
},
draw_group = function(self, data, panel_params, coord, na.rm = FALSE) {
if (na.rm) data <- data[stats::complete.cases(data[c("y", "xmin", "xmax")]), ]
#if dataframe is empty there's nothing to draw
if (nrow(data) == 0) return(grid::nullGrob())
data <- data[order(data$group, data$y), ]
# remove all points that fall below the minimum width
data$xmax[data$width < data$min_width] <- NA
# Check that aesthetics are constant
aes <- unique(data[c("colour", "fill", "linewidth", "linetype", "alpha")])
if (nrow(aes) > 1) {
stop("Aesthetics can not vary along a ridgeline")
}
aes <- as.list(aes)
# Instead of removing NA values from the data and plotting a single
# polygon, we want to "stop" plotting the polygon whenever we're
# missing values and "start" a new polygon as soon as we have new
# values. We do this by creating an id vector for polygonGrob that
# has distinct polygon numbers for sequences of non-NA values and NA
# for NA values in the original data. Example: c(NA, 2, 2, 2, NA, NA,
# 4, 4, 4, NA)
missing_pos <- !stats::complete.cases(data[c("y", "xmin", "xmax")])
ids <- cumsum(missing_pos) + 1
ids[missing_pos] <- NA
# munching for polygon
positions <- with(data, data.frame(
y = c(y, rev(y)),
x = c(xmax, rev(xmin)),
id = c(ids, rev(ids))
))
munched_poly <- ggplot2::coord_munch(coord, positions, panel_params)
# munching for line
positions <- with(data, data.frame(
y = y,
x = xmax,
id = ids
))
munched_line <- ggplot2::coord_munch(coord, positions, panel_params)
# placing the actual grob generation into a separate function allows us to override for geom_density_ridges2
self$make_group_grob(munched_line, munched_poly, aes)
},
make_group_grob = function(munched_line, munched_poly, aes) {
lg <- ggname("geom_ridgeline",
grid::polylineGrob(
munched_line$x, munched_line$y, id = munched_line$id,
default.units = "native",
gp = grid::gpar(
col = aes$colour,
lwd = aes$linewidth * .pt,
lty = aes$linetype)
))
ag <- ggname("geom_ridgeline",
grid::polygonGrob(
munched_poly$x, munched_poly$y, id = munched_poly$id,
default.units = "native",
gp = grid::gpar(
fill = ggplot2::alpha(aes$fill, aes$alpha),
lty = 0)
))
grid::grobTree(ag, lg)
}
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.