Nothing
#' @title Dot plot/chart for labeled numeric data.
#' @name ggdotplotstats
#'
#' @description
#'
#' A dot chart (as described by William S. Cleveland) with statistical details
#' from one-sample test.
#'
#' The point estimate (and associated uncertainty) displayed depends on
#' the type of statistics selected:
#'
#' - **mean** for parametric statistics
#' - **median** for non-parametric statistics
#' - **trimmed mean** for robust statistics
#' - **MAP estimator** for Bayesian statistics
#'
#' @section Summary of graphics:
#'
#' ```{r child="man/rmd-fragments/ggdotplotstats_graphics.Rmd"}
#' ```
#'
#' @param ... Currently ignored.
#' @param y Label or grouping variable.
#' @inheritParams gghistostats
#' @inheritParams ggcoefstats
#' @inheritParams ggbetweenstats
#' @inheritParams ggcoefstats
#'
#' @inheritSection statsExpressions::one_sample_test One-sample tests
#'
#' @seealso \code{\link{grouped_gghistostats}}, \code{\link{gghistostats}},
#' \code{\link{grouped_ggdotplotstats}}
#'
#' @autoglobal
#'
#' @details For details, see:
#' <https://indrajeetpatil.github.io/ggstatsplot/articles/web_only/ggdotplotstats.html>
#'
#' @examplesIf identical(Sys.getenv("NOT_CRAN"), "true")
#' # for reproducibility
#' set.seed(123)
#'
#' # creating a plot
#' p <- ggdotplotstats(
#' data = ggplot2::mpg,
#' x = cty,
#' y = manufacturer,
#' title = "Fuel economy data",
#' xlab = "city miles per gallon"
#' )
#'
#' # looking at the plot
#' p
#'
#' # extracting details from statistical tests
#' extract_stats(p)
#' @export
ggdotplotstats <- function(
data,
x,
y,
xlab = NULL,
ylab = NULL,
title = NULL,
subtitle = NULL,
caption = NULL,
type = "parametric",
test.value = 0,
bf.prior = 0.707,
bf.message = TRUE,
effsize.type = "g",
conf.int = TRUE,
conf.level = 0.95,
tr = 0.2,
digits = 2L,
results.subtitle = TRUE,
point.args = list(color = "black", size = 3, shape = 16),
errorbar.args = list(height = 0, na.rm = TRUE),
centrality.plotting = TRUE,
centrality.type = type,
centrality.line.args = list(color = "blue", linewidth = 1, linetype = "dashed"),
ggplot.component = NULL,
ggtheme = ggstatsplot::theme_ggstatsplot(),
...
) {
# data -----------------------------------
# make sure both quoted and unquoted arguments are allowed
c(x, y) %<-% c(ensym(x), ensym(y))
type <- stats_type_switch(type)
.f.stats.args <- list(conf.level = conf.level, digits = digits, tr = tr, bf.prior = bf.prior)
data %<>%
select({{ x }}, {{ y }}) %>%
tidyr::drop_na()
data <-
suppressWarnings(centrality_description(
data, {{ y }}, {{ x }},
type = type, conf.level = conf.level, digits = digits, tr = tr, bf.prior = bf.prior
))
data %<>%
arrange({{ x }}) %>%
mutate(
percent_rank = percent_rank({{ x }}),
rank = row_number()
)
# statistical analysis ------------------------------------------
if (results.subtitle) {
.f.args <- list(data = data, x = {{ x }}, test.value = test.value, effsize.type = effsize.type)
subtitle_df <- .eval_f(one_sample_test, !!!.f.args, !!!.f.stats.args, type = type)
subtitle <- .extract_expression(subtitle_df)
if (type == "parametric" && bf.message) {
caption_df <- .eval_f(one_sample_test, !!!.f.args, !!!.f.stats.args, type = "bayes")
caption <- .extract_expression(caption_df)
}
}
# plot -----------------------------------
plot_dot <- ggplot(data, mapping = aes({{ x }}, y = rank)) +
exec(geom_point, !!!point.args) +
scale_y_continuous(
name = ylab,
labels = pull(data, {{ y }}),
breaks = data$rank,
sec.axis = dup_axis(
name = "percentile",
breaks = seq(1L, nrow(data), (nrow(data) - 1L) / 4),
labels = 25 * 0:4
)
)
if (conf.int) {
plot_dot <- plot_dot + exec(geom_errorbarh, mapping = aes(xmin = conf.low, xmax = conf.high), !!!errorbar.args)
}
# centrality plotting -------------------------------------
if (isTRUE(centrality.plotting)) {
plot_dot <- .histo_labeller(
plot_dot,
x = pull(data, {{ x }}),
type = stats_type_switch(centrality.type),
tr = tr,
digits = digits,
centrality.line.args = centrality.line.args
)
}
# annotations -------------------------
plot_dot +
labs(
x = xlab %||% as_name(x),
y = ylab %||% as_name(y),
title = title,
subtitle = subtitle,
caption = caption
) +
ggtheme +
ggplot.component
}
#' @title Grouped histograms for distribution of a labeled numeric variable
#' @name grouped_ggdotplotstats
#'
#' @description
#'
#' Helper function for `ggstatsplot::ggdotplotstats()` to apply this function
#' across multiple levels of a given factor and combining the resulting plots
#' using `ggstatsplot::combine_plots()`.
#'
#' @inheritParams ggdotplotstats
#' @inheritParams grouped_ggbetweenstats
#' @inheritDotParams ggdotplotstats -title
#'
#' @seealso \code{\link{grouped_gghistostats}}, \code{\link{ggdotplotstats}},
#' \code{\link{gghistostats}}
#'
#' @autoglobal
#'
#' @inherit ggdotplotstats return references
#' @inherit ggdotplotstats return details
#'
#' @examplesIf identical(Sys.getenv("NOT_CRAN"), "true")
#' # for reproducibility
#' set.seed(123)
#' library(dplyr, warn.conflicts = FALSE)
#'
#' # removing factor level with very few no. of observations
#' df <- filter(ggplot2::mpg, cyl %in% c("4", "6", "8"))
#'
#' # plot
#' grouped_ggdotplotstats(
#' data = df,
#' x = cty,
#' y = manufacturer,
#' grouping.var = cyl,
#' test.value = 15.5
#' )
#' @export
grouped_ggdotplotstats <- function(
data,
...,
grouping.var,
plotgrid.args = list(),
annotation.args = list()
) {
.grouped_list(data, {{ grouping.var }}) %>%
purrr::pmap(.f = ggdotplotstats, ...) %>%
combine_plots(plotgrid.args, annotation.args)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.