Nothing
#' Apply function to unique subsets of a data.frame
#'
#' This function is akin to `plyr::ddply`. It takes a single data.frame,
#' splits it by the unique combinations of the columns given in `by`, apply a
#' function to each split, and then reassembles the results into a single
#' data.frame again.
#'
#' https://github.com/tidyverse/ggplot2/blob/master/R/compat-plyr.R
#'
#' Used by GeomPointTrace
#'
#' @param df A data.frame
#' @param by A character vector of column names to split by
#' @param fun A function to apply to each split
#' @param ... Further arguments to `fun`
#' @param drop Should unused factor levels in the columns given in `by` be
#' dropped.
#'
#' @return A data.frame if the result of `fun` does not include the columns
#' given in `by` these will be prepended to the result.
#'
#' @noRd
dapply <- function(df, by, fun, ..., drop = TRUE) {
grouping_cols <- .subset(df, by)
fallback_order <- unique(c(by, names(df)))
apply_fun <- function(x) {
res <- fun(x, ...)
if (is.null(res)) return(res)
if (length(res) == 0) return(new_data_frame())
vars <- lapply(stats::setNames(by, by), function(col) .subset2(x, col)[1])
if (is.matrix(res)) res <- split_matrix(res)
if (is.null(names(res))) names(res) <- paste0("V", seq_along(res))
if (all(by %in% names(res))) return(new_data_frame(unclass(res)))
res <- modify_list(unclass(vars), unclass(res))
new_data_frame(res[intersect(c(fallback_order, names(res)), names(res))])
}
# Shortcut when only one group
if (all(vapply(grouping_cols, single_value, logical(1)))) {
return(apply_fun(df))
}
ids <- id(grouping_cols, drop = drop)
group_rows <- split_with_index(seq_len(nrow(df)), ids)
rbind_dfs(lapply(seq_along(group_rows), function(i) {
cur_data <- df_rows(df, group_rows[[i]])
apply_fun(cur_data)
}))
}
# Fast data.frame constructor and indexing
# No checking, recycling etc. unless asked for
# Used by dapply
# https://github.com/tidyverse/ggplot2/blob/master/R/compat-plyr.R
new_data_frame <- function(x = list(), n = NULL) {
if (length(x) != 0 && is.null(names(x))) {
stop("Elements must be named")
}
lengths <- vapply(x, length, integer(1))
if (is.null(n)) {
n <- if (length(x) == 0 || min(lengths) == 0) 0 else max(lengths)
}
for (i in seq_along(x)) {
if (lengths[i] == n) next
if (lengths[i] != 1) {
stop("Elements must equal the number of rows or 1")
}
x[[i]] <- rep(x[[i]], n)
}
class(x) <- "data.frame"
attr(x, "row.names") <- .set_row_names(n)
x
}
data_frame <- function(...) {
new_data_frame(list(...))
}
# Used by dapply
# https://github.com/tidyverse/ggplot2/blob/master/R/utilities.r
split_with_index <- function(x, f, n = max(f)) {
if (n == 1) return(list(x))
f <- as.integer(f)
attributes(f) <- list(levels = as.character(seq_len(n)), class = "factor")
unname(split(x, f))
}
# Used by dapply
# https://github.com/tidyverse/ggplot2/blob/master/R/compat-plyr.R
single_value <- function(x, ...) {
UseMethod("single_value")
}
#' @export
single_value.default <- function(x, ...) {
# This is set by id() used in creating the grouping var
identical(attr(x, "n"), 1L)
}
#' @export
single_value.factor <- function(x, ...) {
# Panels are encoded as factor numbers and can never be missing (NA)
identical(levels(x), "1")
}
# More performant modifyList without recursion
# Used by dapply
# https://github.com/tidyverse/ggplot2/blob/master/R/performance.R
modify_list <- function(old, new) {
for (i in names(new)) old[[i]] <- new[[i]]
old
}
# Info needed for rbind_dfs date/time handling
ggtrace_global <- new.env(parent = emptyenv())
#' @importFrom rlang on_load
#' @noRd
rlang::on_load({
date <- Sys.Date()
ggtrace_global$date_origin <- date - unclass(date)
time <- Sys.time()
ggtrace_global$time_origin <- time - unclass(time)
})
#' Bind data frames together by common column names
#'
#' This function is akin to `plyr::rbind.fill`, `dplyr::bind_rows`, and
#' `data.table::rbindlist`. It takes data frames in a list and stacks them on
#' top of each other, filling out values with `NA` if the column is missing from
#' a data.frame
#'
#' Used by dapply
#' https://github.com/tidyverse/ggplot2/blob/master/R/compat-plyr.R
#'
#' @param dfs A list of data frames
#'
#' @return A data.frame with the union of all columns from the data frames given
#' in `dfs`
#'
#' @noRd
rbind_dfs <- function(dfs) {
out <- list()
columns <- unique(unlist(lapply(dfs, names)))
nrows <- vapply(dfs, .row_names_info, integer(1), type = 2L)
total <- sum(nrows)
if (length(columns) == 0) return(new_data_frame(list(), total))
allocated <- rep(FALSE, length(columns))
names(allocated) <- columns
col_levels <- list()
ord_levels <- list()
for (df in dfs) {
new_columns <- intersect(names(df), columns[!allocated])
for (col in new_columns) {
if (is.factor(df[[col]])) {
all_ordered <- all(vapply(dfs, function(df) {
val <- .subset2(df, col)
is.null(val) || is.ordered(val)
}, logical(1)))
all_factors <- all(vapply(dfs, function(df) {
val <- .subset2(df, col)
is.null(val) || is.factor(val)
}, logical(1)))
if (all_ordered) {
ord_levels[[col]] <- unique(unlist(lapply(dfs, function(df) levels(.subset2(df, col)))))
} else if (all_factors) {
col_levels[[col]] <- unique(unlist(lapply(dfs, function(df) levels(.subset2(df, col)))))
}
out[[col]] <- rep(NA_character_, total)
} else {
out[[col]] <- rep(.subset2(df, col)[1][NA], total)
}
}
allocated[new_columns] <- TRUE
if (all(allocated)) break
}
is_date <- lapply(out, inherits, "Date")
is_time <- lapply(out, inherits, "POSIXct")
pos <- c(cumsum(nrows) - nrows + 1)
for (i in seq_along(dfs)) {
df <- dfs[[i]]
rng <- seq(pos[i], length.out = nrows[i])
for (col in names(df)) {
date_col <- inherits(df[[col]], "Date")
time_col <- inherits(df[[col]], "POSIXct")
if (is_date[[col]] && !date_col) {
out[[col]][rng] <- as.Date(
unclass(df[[col]]),
origin = ggtrace_global$date_origin
)
} else if (is_time[[col]] && !time_col) {
out[[col]][rng] <- as.POSIXct(
unclass(df[[col]]),
origin = ggtrace_global$time_origin
)
} else if (date_col || time_col || inherits(df[[col]], "factor")) {
out[[col]][rng] <- as.character(df[[col]])
} else {
out[[col]][rng] <- df[[col]]
}
}
}
for (col in names(ord_levels)) {
out[[col]] <- ordered(out[[col]], levels = ord_levels[[col]])
}
for (col in names(col_levels)) {
out[[col]] <- factor(out[[col]], levels = col_levels[[col]])
}
attributes(out) <- list(
class = "data.frame",
names = names(out),
row.names = .set_row_names(total)
)
out
}
# Used by dapply
# https://github.com/tidyverse/ggplot2/blob/master/R/performance.R
split_matrix <- function(x, col_names = colnames(x)) {
force(col_names)
x <- lapply(seq_len(ncol(x)), function(i) x[, i])
if (!is.null(col_names)) names(x) <- col_names
x
}
# Used by rbind_dfs
# https://github.com/tidyverse/ggplot2/blob/master/R/performance.R
df_rows <- function(x, i) {
new_data_frame(lapply(x, `[`, i = i))
}
# Helpers used to add info for geom documentation
# https://github.com/tidyverse/ggplot2/blob/master/R/utilities-help.r
rd_aesthetics <- function(type, name) {
obj <- switch(
type,
geom = check_subclass(name, "Geom", env = globalenv()),
stat = check_subclass(name, "Stat", env = globalenv())
)
aes <- rd_aesthetics_item(obj)
aes <- aes[aes != paste0("\\code{", KEEP_CLMN, "}")]
res <- c(
"@section Aesthetics:",
paste0(
"\\code{", type, "_", name, "()} ",
"understands the following aesthetics (required aesthetics are in bold):"
),
"\\itemize{",
paste0(" \\item ", aes),
"}",
"Learn more about setting these aesthetics in \\code{vignette(\"ggplot2-specs\")}."
)
res
}
rd_aesthetics_item <- function(x) {
req <- x$required_aes
req <- sub("|", "} \\emph{or} \\code{", req, fixed = TRUE)
req_aes <- unlist(strsplit(x$required_aes, "|", fixed = TRUE))
optional_aes <- setdiff(x$aesthetics(), req_aes)
all <- union(req, sort(optional_aes))
ifelse(
all %in% req,
paste0("\\strong{\\code{", all, "}}"),
paste0("\\code{", all, "}")
)
}
# Used by rd_aesthetics
# https://github.com/tidyverse/ggplot2/blob/master/R/layer.r
check_subclass <- function(x, subclass, argname = to_lower_ascii(subclass),
env = parent.frame()) {
if (inherits(x, subclass)) {
x
} else if (is.character(x) && length(x) == 1) {
name <- paste0(subclass, camelize(x, first = TRUE))
obj <- find_global(name, env = env)
if (is.null(obj) || !inherits(obj, subclass)) {
stop("Can't find `", argname, "` called '", x, "'")
} else {
obj
}
} else {
stop("`", argname, "` must be either a string or a ", subclass, " object.")
}
}
# Look for object first in parent environment and if not found, then in
# ggplot2 namespace environment. This makes it possible to override default
# scales by setting them in the parent environment.
# Used by check_subclass
# https://github.com/tidyverse/ggplot2/blob/master/R/scale-type.R
find_global <- function(name, env, mode = "any") {
if (exists(name, envir = env, mode = mode)) {
return(get(name, envir = env, mode = mode))
}
nsenv <- asNamespace("ggtrace")
if (exists(name, envir = nsenv, mode = mode)) {
return(get(name, envir = nsenv, mode = mode))
}
NULL
}
# Convert to camel case
# Used by check_subclass
# https://github.com/tidyverse/ggplot2/blob/master/R/layer.r
camelize <- function(x, first = FALSE) {
x <- gsub("_(.)", "\\U\\1", x, perl = TRUE)
if (first) x <- firstUpper(x)
x
}
# Used by camelize
# https://github.com/tidyverse/ggplot2/blob/master/R/utilities.r
firstUpper <- function(s) {
paste0(to_upper_ascii(substring(s, 1, 1)), substring(s, 2))
}
# Used by camelize and check_subclass
# https://github.com/tidyverse/ggplot2/blob/master/R/utilities.r
lower_ascii <- "abcdefghijklmnopqrstuvwxyz"
upper_ascii <- "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
to_lower_ascii <- function(x) chartr(upper_ascii, lower_ascii, x)
to_upper_ascii <- function(x) chartr(lower_ascii, upper_ascii, x)
# Used by geom_path_trace
# https://github.com/tidyverse/ggplot2/blob/master/R/utilities.r
"%||%" <- function(a, b) {
if (!is.null(a)) a else b
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.