R/search.paths.ind.R

Defines functions search.paths.ind

Documented in search.paths.ind

#' Searches for individual-level paths. Ties together highest.mi, return.mis, prune, and get.params functions.
#' @param dat Object created at beginning of gimme containing static info.
#' @param k Which individual this is. 
#' @param base_syntax A character vector containing syntax that never changes.
#' @param fixed_syntax A character vector containing syntax that does not change
#' in a given stage of searching.
#' @param data_list A list of datasets to be used in a given stage of the 
#' search. Varies based on group, subgroup, or individual-level stage.
#' @param n_subj The number of subjects in a given stage of the search. If
#' in the group stage, n_subj equals the number of subjects. If in the subgroup
#' stage, n_subj equals the number of individuals in a given subgroup. At the 
#' individual stage, n_subj = 1.
#' @param prop_cutoff The proportion of individuals for whom a path must be
#' nonsignificant in order for it to be dropped from the models. NULL if used 
#' at the individual-level.
#' @param elig_paths A character vector containing eligible paths that
#' gimme is allowed to add to the model at a given stage.
#' @param chisq_cutoff Cutoff used in order for MI to be considered significant.
#' Value varies depending on stage of search (e.g., group, subgroup, 
#' individual).
#' @param subgroup_stage Logical. Only present in order to instruct gimme
#' what message to print to console using writeLines.
#' @return Returns updated values of n_paths and add_syntax.
#' @keywords internal 
search.paths.ind <- function(dat,
                             k,
                            data_list,
                             base_syntax, 
                             fixed_syntax,
                             elig_paths, 
                             prop_cutoff, 
                             n_subj, 
                             chisq_cutoff,
                             subgroup_stage,
                             hybrid,
                             dir_prop_cutoff,
                             ind_z_cutoff){
  
  #-----------------------------------------------------------#
  ##### FUNCTION FOR TESTING FOR STABILITY #####
  #-----------------------------------------------------------#
  
  testWeights <- function(fit, dat){
    ind_betas <- round(lavInspect(fit, "std")$beta, digits = 4)
    #added to ensure correct ordering in matrices
    ind_betas <- ind_betas[dat$varLabels$endo,]
    ind_betas <- ind_betas[,dat$varLabels$coln]
    test      <- any(Re(eigen(ind_betas[,1:dat$n_endog])$values)>=1) | 
      any(Re(eigen(ind_betas[,(dat$n_endog+1):(dat$n_endog*2)])$values)>=1)
    return(test)
  }
  
  ###### setup ######
  
  obj <- replicate(1, 
                   list(
                     add_syntax     = character(),
                     n_paths        = 0, 
                     final.sol      = FALSE
                   ), simplify = FALSE
  )
  
  cnt <- 1
  history <- list()
  dropped_param <- NULL
  
  search    <- TRUE
  
  #-----------------------------------------------------------#
  #### INITIAL SEARCH #####
  #-----------------------------------------------------------#
  
  while(search){ # begin search
    
    mi_list <- list() 
    
    indices <- NULL
    
    
    # individual level search
    fit <- fit.model(
      syntax = c(base_syntax, fixed_syntax, obj[[1]]$add_syntax),
      data_file = data_list
    )
    
    #------------------------------------------------------#
    # Check to see if model converged.
    #------------------------------------------------------#
    
    if (!inherits(fit, "try-error")){
      # stl 2018/08/16 separated convergence check from error check
      # can't inspect convergence of an error object
      converge <- lavaan::lavInspect(fit, "converged") 
      zero_se  <- sum(lavInspect(fit, "se")$beta, na.rm = TRUE) == 0
      
      if (converge & !any(is.na(lavInspect(fit, what = "list")$se))){ 
        indices    <- fitMeasures(fit, c("chisq", "df", "pvalue", "rmsea", 
                                         "srmr", "nnfi", "cfi"))
      } else {
        indices <- NULL
      }
    } else {
      indices <- NULL
      converge <- FALSE
      zero_se  <- TRUE
    }
    mi_list[[1]] <- return.mis(fit, elig_paths)
    
    
    #------------------------------------------------------#
    # Add the parameters with the largest MI
    #------------------------------------------------------#
    if (!all(is.na(unlist(mi_list)))){
      
      add_p     <- highest.mi(mi_list      = mi_list,
                              indices      = indices,
                              elig_paths   = elig_paths,
                              prop_cutoff  = prop_cutoff, 
                              n_subj       = n_subj,
                              chisq_cutoff = chisq_cutoff,
                              allow.mult   = FALSE,
                              hybrid       = hybrid, 
                              dir_prop_cutoff = dir_prop_cutoff)
      
      add_param <- add_p$add_param
      mi_info   <- add_p$mi_list
      
    } else {
      
      add_param            <- NA
      mi_info              <- NA
      
    }
    #------------------------------------------------------#
    
    
    #------------------------------------------------------#
    # If there are no paths to add.
    #------------------------------------------------------#
    if(all(is.na(add_param))){
      
      search               <- FALSE
      obj[[1]]$final.sol   <- TRUE
      
      res      <- list()
      res[[1]] <- list(
        add_syntax     = obj[[1]]$add_syntax,
        n_paths        = obj[[1]]$n_paths,
        final.sol      = obj[[1]]$final.sol
      )
      
      #------------------------------------------------------#
      # If there is only a path to add, 
      #  still searching...
      #------------------------------------------------------#
    } else {
      
      
      obj[[1]]$n_paths     <- obj[[1]]$n_paths + 1
      obj[[1]]$add_syntax  <- append(obj[[1]]$add_syntax, add_param[1])
    } 
    
  } # end search
  
  
  #### start get.params ####
  # prune is integrated here #
  
  #-----------------------------------------------------------#
  ###### IF NON CONVERGE, ROLL BACK, THEN PRUNE, REPEAT ######
  #-----------------------------------------------------------#
  
  pruned  <- TRUE # keep going if pruned after 1st convergence test, so then new fit is evaluated 
  nonconv <- TRUE
  nonconv_path <- NULL
  dropped_param <- NULL
  
  # the below while loop first checks convergence, then prunes, then adds paths if eligible, then repeats
  while(pruned | nonconv){ # note: nonconverge only remains true if prune or additional paths added 
    
    if (converge & !zero_se & !testWeights(fit, dat)){
      status1   <- "converged normally"
      keepgoing = FALSE
      nonconv = FALSE
      if (!add_p$goodfit & is.null(nonconv_path)){
        status1 <- "no additional significant paths" 
      } else if (!add_p$goodfit & !is.null(nonconv_path)) {
          status1 <- "last known convergence"
        }
      } else {
        
        # if no convergence or unstable, roll back one path at individual level, try again 
        if ((!converge | zero_se | testWeights(fit, dat)) & (length(obj[[1]]$add_syntax)!= 0)){
          keepgoing = TRUE } else if ((!converge | zero_se | testWeights(fit, dat)) & (length(obj[[1]]$add_syntax)== 0)) {
            if (testWeights(fit, dat) | zero_se)
              status1 <- "unstable solution"
              break
            if (!converge)
              status1 <- "nonconvergence"
            break
          }

        while(keepgoing){
          nonconv_path <- c(nonconv_path, obj[[1]]$add_syntax[length(obj[[1]]$add_syntax)])
          obj[[1]]$add_syntax <- obj[[1]]$add_syntax[-length(obj[[1]]$add_syntax)]
          fit <- fit.model(syntax    = c(base_syntax, fixed_syntax, obj[[1]]$add_syntax), 
                           data_file = dat$ts_list[[k]])
          error   <- inherits(fit, "try-error")
          if (!error) {
            converge <- lavInspect(fit, "converged")
            zero_se  <- sum(lavInspect(fit, "se")$beta, na.rm = TRUE) == 0
          } else {
            converge <- FALSE
            zero_se  <- TRUE
          }
          if ((!converge | zero_se | testWeights(fit, dat)) & (length(obj[[1]]$add_syntax)!= 0)){
            keepgoing = TRUE } else if ((!converge | zero_se | testWeights(fit, dat)) & (length(obj[[1]]$add_syntax)== 0)) {
              if (testWeights(fit, dat))
                status1 <- "unstable solution"
              nonconv = FALSE
              keepgoing = FALSE
              if (!converge)
                status1 <- "nonconvergence"
              nonconv = FALSE
              keepgoing = FALSE
            } else {
              status1 <- "last known convergence"
              nonconv = FALSE
              keepgoing = FALSE
              
            }
        } # end while loop for deleting paths
        res[[1]] <- list(
          add_syntax     = obj[[1]]$add_syntax,
          n_paths        = length(obj[[1]]$add_syntax),
          final.sol      = obj[[1]]$final.sol
        )
      } # end non converge roll back
    #-----------------------------------------------------------#
    #### PRUNE #####
    #-----------------------------------------------------------#
    
    pruned <- FALSE # so we don't end up in a forever loop; prune again to test convergence again above
    prune <- TRUE
    
    z_list <- list()

    while(prune){ 
      if (lavaan::lavInspect(fit, "converged")){
        z_list <- list()
        z_list[[1]] <- return.zs(fit, elig_paths)
        if(!all(is.na(z_list))){
          drop_param <- lowest.z(z_list,
                                 elig_paths  =   obj[[1]]$add_syntax,
                                 prop_cutoff = prop_cutoff, 
                                 n_subj      = n_subj, 
                                 test_cutoff = ind_z_cutoff)
        } else {
          drop_param <- NA
        }
        
        if (!is.na(drop_param)){
          pruned <- TRUE 
          dropped_param <- c(dropped_param, drop_param)
          
          obj[[1]]$add_syntax <- obj[[1]]$add_syntax[!obj[[1]]$add_syntax %in% drop_param] 
          
          fit <- fit.model(
            syntax = c(base_syntax, fixed_syntax, obj[[1]]$add_syntax),
            data_file = data_list
          )
          
        } else {
          
          prune = FALSE
          nonconv = FALSE
        }
      } else {
        nonconv = TRUE
      }
      if (testWeights(fit, dat))
        status1 <- "unstable solution"
    }
    
    #-----------------------------------------------------------#
    #### One last test for adding paths #####
    #-----------------------------------------------------------#
    
      if (!inherits(fit, "try-error")){
        # stl 2018/08/16 separated convergence check from error check
        # can't inspect convergence of an error object
        if (lavaan::lavInspect(fit, "converged") & !any(is.na(lavInspect(fit, what = "list")$se))){ 
          indices    <- fitMeasures(fit, c("chisq", "df", "pvalue", "rmsea", 
                                           "srmr", "nnfi", "cfi"))
          converge <- lavInspect(fit, "converged")
          zero_se  <- sum(lavInspect(fit, "se")$beta, na.rm = TRUE) == 0
       
      mi_list[[1]] <- return.mis(fit, elig_paths[!elig_paths %in% c(dropped_param, nonconv_path)])
      #------------------------------------------------------#
      # Add the parameters with the largest MI
      #------------------------------------------------------#
      if (!all(is.na(unlist(mi_list)))){
        
        add_p     <- highest.mi(mi_list      = mi_list,
                                indices      = indices,
                                elig_paths   = elig_paths[!elig_paths %in% c(dropped_param, nonconv_path)],
                                prop_cutoff  = prop_cutoff, 
                                n_subj       = n_subj,
                                chisq_cutoff = chisq_cutoff,
                                allow.mult   = FALSE,
                                hybrid       = hybrid, 
                                dir_prop_cutoff = dir_prop_cutoff)
        
        add_param <- add_p$add_param
        mi_info   <- add_p$mi_list
        
      } else {
        
        add_param            <- NA
        mi_info              <- NA
        
      }
      #------------------------------------------------------#
      
      
      #------------------------------------------------------#
      # If there are no paths to add.
      #------------------------------------------------------#
      if(all(is.na(add_param))){
        
        search               <- FALSE
        obj[[1]]$final.sol   <- TRUE
        
        res      <- list()
        res[[1]] <- list(
          add_syntax     = obj[[1]]$add_syntax,
          n_paths        = obj[[1]]$n_paths,
          final.sol      = obj[[1]]$final.sol
        )
        
        if(!add_p$goodfit){
          status1 <- "no additional significant paths"
        }
        #------------------------------------------------------#
        # If there is only a path to add, 
        #  still searching...
        #------------------------------------------------------#
      } else {
        
        search <- TRUE
        
        obj[[1]]$n_paths     <- obj[[1]]$n_paths + 1
        obj[[1]]$add_syntax  <- append(obj[[1]]$add_syntax, add_param[1])
      } 
      
      while(search){ # continue search
        
        mi_list <- list() 
        
        indices <- NULL
        
        nonconverge = TRUE # check convergence at start of while loop since paths added
        # individual level search
        fit <- fit.model(
          syntax = c(base_syntax, fixed_syntax, obj[[1]]$add_syntax),
          data_file = data_list
        )
        
        #------------------------------------------------------#
        # Check to see if model converged.
        #------------------------------------------------------#
        
        if (!inherits(fit, "try-error")){
          # stl 2018/08/16 separated convergence check from error check
          # can't inspect convergence of an error object
          if (lavaan::lavInspect(fit, "converged") & !any(is.na(lavInspect(fit, what = "list")$se))){ 
            indices    <- fitMeasures(fit, c("chisq", "df", "pvalue", "rmsea", 
                                             "srmr", "nnfi", "cfi"))
            converge <- lavInspect(fit, "converged")
            zero_se  <- sum(lavInspect(fit, "se")$beta, na.rm = TRUE) == 0
          } else {
            indices <- NULL
            converge <-  lavInspect(fit, "converged")
            zero_se  <- sum(lavInspect(fit, "se")$beta, na.rm = TRUE) == 0
            nonconv = TRUE
          }
        } else {
          indices <- NULL
          converge <- FALSE
          zero_se  <- TRUE
          nonconv <- TRUE
        }
        mi_list[[1]] <- return.mis(fit, elig_paths[!elig_paths %in% c(dropped_param, nonconv_path)])
        
        
        #------------------------------------------------------#
        # Add the parameters with the largest MI
        #------------------------------------------------------#
        if (!all(is.na(unlist(mi_list)))){
          
          add_p     <- highest.mi(mi_list      = mi_list,
                                  indices      = indices,
                                  elig_paths   = elig_paths[!elig_paths %in% c(dropped_param, nonconv_path)],
                                  prop_cutoff  = prop_cutoff, 
                                  n_subj       = n_subj,
                                  chisq_cutoff = chisq_cutoff,
                                  allow.mult   = FALSE,
                                  hybrid       = hybrid, 
                                  dir_prop_cutoff = dir_prop_cutoff)
          
          add_param <- add_p$add_param
          mi_info   <- add_p$mi_list
          
        } else {
          
          add_param            <- NA
          mi_info              <- NA
          
        }
        #------------------------------------------------------#
        
        
        #------------------------------------------------------#
        # If there are no paths to add.
        #------------------------------------------------------#
        if(all(is.na(add_param))){
          
          search               <- FALSE
          obj[[1]]$final.sol   <- TRUE
          
          res      <- list()
          res[[1]] <- list(
            add_syntax     = obj[[1]]$add_syntax,
            n_paths        = obj[[1]]$n_paths,
            final.sol      = obj[[1]]$final.sol
          )
          
          if(!add_p$goodfit){
            status1 <- "no additional significant paths"
            nonconv <- FALSE
            }
          #------------------------------------------------------#
          # If there is only a path to add, 
          #  still searching...
          #------------------------------------------------------#
        } else {
          
          
          obj[[1]]$n_paths     <- obj[[1]]$n_paths + 1
          obj[[1]]$add_syntax  <- append(obj[[1]]$add_syntax, add_param[1])
        } 
        
      } # end search
    
        } else {
          indices <- NULL
          converge <-  lavInspect(fit, "converged")
          zero_se  <- sum(lavInspect(fit, "se")$beta, na.rm = TRUE) == 0
        }
      } else {
        indices <- NULL
        converge <- FALSE
        zero_se  <- TRUE
        nonconv = TRUE
      }
  } # end while(pruned | nonconv) - convergence, pruning, and additional searches (if needed) complete 
  
  #-----------------------------------------------------------#
  #####COMPILE RESULTS ####
  #-----------------------------------------------------------#
    #-----------------------------------------------------------#
    # COMPILE RESULTS IF CONVERGED 
    #-----------------------------------------------------------#
  
  op  = NULL # appease CRAN check
  ind_plot = NA
  ind_plot_psi = NA
  
  if (converge & !zero_se){ #& (ind$n_ind_paths[k] >0) ){
    ind_fit    <- fitMeasures(fit, c("chisq", "df", "npar", "pvalue", "rmsea", 
                                     "srmr", "nnfi", "cfi", "bic", "aic", "logl"))
    ind_fit    <- round(ind_fit, digits = 4)
    ind_fit[2] <- round(ind_fit[2], digits = 0)
    
    r2         <- inspect(fit, "rsquare")
    r2         <- r2[dat$varLabels$endo]
    
    ind_fit    <- c(ind_fit, round(r2, digits = 4))
    
    ind_vcov_full <- lavInspect(fit, "vcov.std.all")
    keep          <- rownames(ind_vcov_full) %in% dat$candidate_paths
    ind_vcov      <- ind_vcov_full[keep, keep]
    
    ind_coefs_unst0 <- parameterEstimates(fit)
    ind_coefs_unst_idx <- paste0(ind_coefs_unst0$lhs,ind_coefs_unst0$op,ind_coefs_unst0$rhs)
    ind_coefs_unst <- ind_coefs_unst0[ind_coefs_unst0$op == "~" |
                                        ind_coefs_unst_idx %in% c(dat$candidate_paths, dat$candidate_corr),]
    
    ind_coefs0 <- standardizedSolution(fit)
    ind_coefs_idx <- paste0(ind_coefs0$lhs,ind_coefs0$op,ind_coefs0$rhs)
    ind_coefs <- ind_coefs0[ind_coefs0$op == "~" |
                              ind_coefs_idx %in% c(dat$candidate_paths, dat$candidate_corr),]
    
    ind_coefs <- cbind(ind_coefs[,1:3], ind_coefs_unst$est, ind_coefs[,4:9])
    colnames(ind_coefs) <- c("lhs", "op", "rhs", "est", "est.std", "se", "z", "pvalue", "ci.lower", "ci.upper")
    
    #ind_coefs <- subset(standardizedSolution(fit), op == "~")
    
    ind_betas <- round(lavInspect(fit, "std")$beta, digits = 4)
    ind_ses   <- round(lavInspect(fit, "se")$beta, digits = 4)
    
    #added to ensure correct ordering in matrices
    ind_betas <- ind_betas[dat$varLabels$endo,]
    ind_betas <- ind_betas[,dat$varLabels$coln]
    
    ind_ses <- ind_ses[dat$varLabels$endo,]
    ind_ses <- ind_ses[,dat$varLabels$coln]
    
    # zf added 2019-01-23
    ind_psi <- round(lavInspect(fit, "std")$psi, digits = 4)
    ind_psi_unstd <- round(lavInspect(fit, "estimates")$psi, digits = 4)
    
    ind_psi <- ind_psi[dat$varLabels$endo,]
    ind_psi <- ind_psi[,dat$varLabels$coln]
    ind_psi_unstd <- ind_psi_unstd[dat$varLabels$endo,]
    ind_psi_unstd <- ind_psi_unstd[,dat$varLabels$coln]
    #rownames(ind_betas) <- rownames(ind_ses) <- dat$varnames[(dat$n_lagged+1):(dat$n_vars_total)]
    #colnames(ind_betas) <- colnames(ind_ses) <- dat$varnames
    #   } # stl comment out 11.20.17 
    
    if (dat$agg & !is.null(dat$out)){
      
      write.csv(ind_betas, file.path(dat$out, "allBetas.csv"), 
                row.names = TRUE)
      
      # write.csv(ind_vcov_full, file.path(dat$out, "allvcov.csv"), 
      #           row.names = TRUE)
      
      write.csv(ind_ses, file.path(dat$out, "allStdErrors.csv"), 
                row.names = TRUE)
      
      # zf added 2019-01-23
      write.csv(ind_psi, file.path(dat$out, "allPsi.csv"),row.names = TRUE)
      write.csv(ind_psi_unstd, file.path(dat$out, "allPsiUnstd.csv"),row.names = TRUE)
      
    } else if (!dat$agg & !is.null(dat$out)) { # & ind$n_ind_paths[k]>0)
      write.csv(ind_betas, file.path(dat$ind_dir, 
                                     paste0(dat$file_order[k,2], 
                                            "BetasStd.csv")), row.names = TRUE)
      
      # write.csv(ind_vcov_full, file.path(dat$ind_dir, 
      #                                paste0(dat$file_order[k,2], 
      #                                       "vcov.csv")), row.names = TRUE)
      # zf added 2019-01-23
      write.csv(ind_psi, file.path(dat$ind_dir, 
                                   paste0(dat$file_order[k,2], 
                                          "Psi.csv")), row.names = TRUE)
      write.csv(ind_psi_unstd, file.path(dat$ind_dir, 
                                         paste0(dat$file_order[k,2], 
                                                "PsiUnstd.csv")), row.names = TRUE)
      write.csv(ind_ses, file.path(dat$ind_dir,
                                   paste0(dat$file_order[k,2], 
                                          "StdErrors.csv")), row.names = TRUE)
    }
    
    if (dat$plot){
      ind_betas_t <- t(ind_betas)
      lagged      <- ind_betas_t[1:dat$n_lagged, ]
      contemp     <- ind_betas_t[(dat$n_lagged+1):(dat$n_vars_total), ]
      plot_vals   <- rbind(w2e(lagged), w2e(contemp))
      is_lagged   <- c(rep(TRUE, sum(lagged != 0)), 
                       rep(FALSE, sum(contemp != 0)))
      
      plot_file   <- ifelse(dat$agg, 
                            file.path(dat$out, "summaryPathsPlot.pdf"),
                            file.path(dat$ind_dir, paste0(dat$file_order[k,2], "Plot.pdf")))
      
      ind_plot <- try(qgraph(plot_vals,
                             layout       = "circle",
                             lty          = ifelse(is_lagged, 2, 1),
                             edge.labels  = FALSE,
                             curve        = FALSE,
                             parallelEdge = TRUE,
                             fade         = FALSE,
                             posCol       = "red",
                             negCol       = "blue",
                             labels       = 
                               dat$varnames[(dat$n_lagged+1):(dat$n_vars_total)],
                             label.cex    = 2,
                             DoNotPlot    = TRUE))
      
      if (!is.null(dat$out) & !inherits(ind_plot, "try-error")){
        pdf(plot_file)
        plot(ind_plot)
        dev.off()
      }
      if(dat$hybrid){
        covpsi     <- ind_psi[, (dat$n_lagged+1):(dat$n_vars_total)]
        covpsi[lower.tri(covpsi)] <- 0 # so we don't get duplicates
        diag(covpsi)    <- 0
        plot_vals_psi   <- w2e(covpsi)
        
        plot_file_psi   <- ifelse(dat$agg, 
                                  file.path(dat$out, "summaryCovPlot.pdf"),
                                  file.path(dat$ind_dir, 
                                            paste0(dat$file_order[k,2], "PlotCov.pdf")))
        
        ind_plot_psi <- try(qgraph(plot_vals_psi,
                                   layout       = "circle",
                                   lty          = 1,
                                   edge.labels  = FALSE,
                                   curve        = FALSE,
                                   parallelEdge = TRUE,
                                   fade         = FALSE,
                                   posCol       = "red",
                                   negCol       = "blue",
                                   arrows       = FALSE,
                                   labels       = 
                                     dat$varnames[(dat$n_lagged+1):(dat$n_vars_total)],
                                   label.cex    = 2,
                                   DoNotPlot    = TRUE))
        
        if (!is.null(dat$out) & !inherits(ind_plot_psi, "try-error")){
          pdf(plot_file_psi)
          plot(ind_plot_psi)
          dev.off()
        }
        
      } else {
        ind_plot_psi <- NA
      }
      
    }
  } # end compile results if converged
  
  #-----------------------------------------------------------#
  # COMPILE RESULTS IF NOT CONVERGED 
  #-----------------------------------------------------------#
  
  if (!converge | zero_se){
    status1 <- "nonconvergence"
    #if (sum(lavInspect(fit, "se")$beta, na.rm = TRUE) == 0) status <- "computationally singular"
    ind_fit   <- rep(NA, 11)
    ind_coefs <- matrix(NA, nrow = 1, ncol = 10)
    colnames(ind_coefs) <- c("lhs", "op", "rhs", "est", "est.std", "se", "z", "pvalue", "ci.lower", "ci.upper")
    ind_betas <- NA
    ind_vcov  <- NA
    ind_plot  <- NA
    ind_plot_psi <- NA
    ind_psi   <- NA
    ind_psi_unstd   <- NA
    ind_vcov_full <- NA
  }

  #-----------------------------------------------------------#
  #### WRAP UP ####
  #-----------------------------------------------------------#
  
  syntax<- c(base_syntax, fixed_syntax, obj[[1]]$add_syntax)
  name <- names(dat$ts_list)[k]
  
  new.obj <- list(status = status1, 
                  ind_fit = ind_fit, 
                  ind_coefs = ind_coefs,
                  ind_betas = ind_betas,
                  ind_vcov = ind_vcov,
                  ind_plot = ind_plot,
                  ind_plot_psi = ind_plot_psi, 
                  ind_psi = ind_psi, 
                  ind_psi_unstd = ind_psi_unstd, 
                  ind_vcov_full = ind_vcov_full,
                  ind_paths     = obj[[1]]$add_syntax,
                  syntax = syntax)

  ## end get.params if n_sub == 1
  
  return(new.obj)
  
}

Try the gimme package in your browser

Any scripts or data that you put into this service are public.

gimme documentation built on June 23, 2025, 5:08 p.m.