Nothing
#' Perform predictive inference in a Gaussian mixture dynamic Bayesian network
#'
#' This function performs predictive inference in a Gaussian mixture dynamic
#' Bayesian network. For a sequence of \eqn{T} time slices, this task consists
#' in defining a time horizon \eqn{h} such that at each time slice \eqn{t}
#' (for \eqn{0 \le t \le T - h}), the state of the system at \eqn{t + h} is
#' estimated given all the data (the evidence) collected up to \eqn{t}. Although
#' the states at \eqn{t + 1, \dots , t + h} are observed in the future, some
#' information about them can be known a priori (such as contextual information
#' or features controlled by the user). This "predicted" evidence can be taken
#' into account when propagating the particles from \eqn{t} to \eqn{t + h} in
#' order to improve the predictions. Predictive inference is performed by
#' sequential importance resampling, which is a particle-based approximate
#' method (Koller and Friedman, 2009).
#'
#' @param gmdbn An object of class \code{gmdbn}.
#' @param evid A data frame containing the evidence. Its columns must explicitly
#' be named after nodes of \code{gmdbn} and can contain missing values (columns
#' with no value can be removed).
#' @param evid_pred A data frame containing the "predicted" evidence. Its
#' columns must explicitly be named after nodes of \code{gmdbn} and can contain
#' missing values (columns with no value can be removed).
#' @param nodes A character vector containing the inferred nodes (by default all
#' the nodes of \code{gmdbn}).
#' @param col_seq A character vector containing the column names of \code{evid}
#' and \code{evid_pred} that describe the observation sequence. If \code{NULL}
#' (the default), all the observations belong to a single sequence. The
#' observations of a same sequence must be ordered such that the \eqn{t}th one
#' is related to time slice \eqn{t} (note that the sequences can have different
#' lengths).
#' @param horizon A positive integer vector containing the time horizons for
#' which predictive inference is performed.
#' @param n_part A positive integer corresponding to the number of particles
#' generated for each observation sequence.
#' @param max_part_sim An integer greater than or equal to \code{n_part}
#' corresponding to the maximum number of particles that can be processed
#' simultaneously. This argument is used to prevent memory overflow, dividing
#' \code{evid} into smaller subsets that are handled sequentially.
#' @param min_ess A numeric value in [0, 1] corresponding to the minimum ESS
#' (expressed as a proportion of \code{n_part}) under which the renewal step of
#' sequential importance resampling is performed. If \code{1} (the default),
#' this step is performed at each time slice.
#' @param verbose A logical value indicating whether subsets of \code{evid} and
#' time slices in progress are displayed.
#'
#' @return If \code{horizon} has one element, a data frame with a structure
#' similar to \code{evid} containing the predicted values of the inferred
#' nodes and their observation sequences (if \code{col_seq} is not \code{NULL}).
#' If \code{horizon} has two or more elements, a list of data frames (tibbles)
#' containing these values for each time horizon.
#'
#' @references
#' Koller, D. and Friedman, N. (2009). \emph{Probabilistic Graphical Models:
#' Principles and Techniques}. The MIT Press.
#'
#' @seealso \code{\link{filtering}}, \code{\link{inference}},
#' \code{\link{smoothing}}
#'
#' @examples
#' \donttest{
#' set.seed(0)
#' data(gmdbn_air, data_air)
#' evid <- data_air
#' evid$NO2[sample.int(7680, 1536)] <- NA
#' evid$O3[sample.int(7680, 1536)] <- NA
#' pred <- prediction(gmdbn_air, evid, evid[, c("DATE", "TEMP", "WIND")],
#' nodes = c("NO2", "O3"), col_seq = "DATE",
#' horizon = c(1, 2), verbose = TRUE)}
#'
#' @export
prediction <- function(gmdbn, evid, evid_pred = NULL, nodes = names(gmdbn$b_1),
col_seq = NULL, horizon = 1, n_part = 1000,
max_part_sim = 1e06, min_ess = 1, verbose = FALSE) {
if (!inherits(gmdbn, "gmdbn")) {
"gmdbn is not of class \"gmdbn\"" %>%
stop()
}
if (!is.data.frame(evid)) {
"evid is not a data frame" %>%
stop()
}
evid <- evid %>%
ungroup()
col_evid <- evid %>%
colnames()
if (any(duplicated(col_evid))) {
"evid has duplicated column names" %>%
stop()
}
struct <- gmdbn %>%
structure()
nodes_gmdbn <- struct$nodes
is_col_seq <- !is.null(col_seq)
if (is_col_seq) {
if (!is.vector(col_seq, "character")) {
"col_seq is not a character vector" %>%
stop()
}
col_seq <- col_seq %>%
unique()
if (any(!str_detect(col_seq,
"^(\\.([A-Za-z_\\.]|$)|[A-Za-z])[A-Za-z0-9_\\.]*$"))) {
"col_seq contains invalid column names" %>%
stop()
}
if (any(str_remove(col_seq, "\\.[1-9][0-9]*$") %in% nodes_gmdbn)) {
"col_seq contains nodes (or instantiations of nodes) of gmdbn" %>%
stop()
}
if (any(!(col_seq %in% col_evid))) {
"elements of col_seq are not column names of evid" %>%
stop()
}
}
seq <- evid %>%
select(all_of(col_seq)) %>%
as_tibble()
if (any(!(map_chr(seq, mode) %in% c("numeric", "character", "logical")))) {
"columns of evid[col_seq] have invalid types" %>%
stop()
}
if (is.null(evid_pred)) {
evid_pred <- seq %>%
slice(0)
col_evid_pred <- col_seq
} else {
if (!is.data.frame(evid_pred)) {
"evid_pred is not a data frame" %>%
stop()
}
evid_pred <- evid_pred %>%
ungroup()
col_evid_pred <- evid_pred %>%
colnames()
if (any(duplicated(col_evid_pred))) {
"evid_pred has duplicated column names" %>%
stop()
}
if (is_col_seq) {
if (any(!(col_seq %in% col_evid_pred))) {
"elements of col_seq are not column names of evid_pred" %>%
stop()
}
if (any(!map2_lgl(seq, evid_pred[col_seq],
function(seq, seq_pred) {
return(identical(class(seq), class(seq_pred)) |
(is.numeric(seq) & is.numeric(seq_pred)) |
((is.character(seq) | is.factor(seq)) &
(is.character(seq_pred) |
is.factor(seq_pred))))
}))) {
"columns of evid[col_seq] and evid_pred[col_seq] have incompatible types" %>%
stop()
}
}
}
if (!is.vector(horizon, "numeric")) {
"horizon is not a numeric vector" %>%
stop()
}
horizon <- horizon %>%
unique()
n_hor <- horizon %>%
length()
if (n_hor == 0) {
"horizon is empty" %>%
stop()
}
if (any(!is.finite(horizon))) {
"horizon has non-finite elements" %>%
stop()
}
if (any(horizon <= 0)) {
"horizon has non-positive elements" %>%
stop()
}
if (any(round(horizon) != horizon)) {
"horizon has non-integer elements" %>%
stop()
}
col_evid_prop <- col_seq %>%
c(nodes_gmdbn)
prefix <- col_evid_prop %>%
sort() %>%
last() %>%
str_c("_")
col_time <- prefix %>%
str_c("time")
seq_time <- seq %>%
group_by(across(col_seq)) %>%
mutate(!!col_time := seq_len(n())) %>%
ungroup()
col_seq_time <- col_seq %>%
c(col_time)
horizon <- horizon %>%
sort()
if (length(gmdbn) == 1) {
evid_pred <- evid_pred %>%
select(any_of(col_evid_prop)) %>%
group_by(across(col_seq)) %>%
mutate(!!col_time := seq_len(n())) %>%
ungroup() %>%
left_join(seq_time, ., by = col_seq_time)
infer <- seq %>%
bind_cols(inference(gmdbn$b_1, evid_pred, nodes = nodes, n_part = n_part,
max_part_sim = max_part_sim, verbose = verbose))
pred <- horizon %>%
map(function(horizon) {
infer %>%
group_by(across(col_seq)) %>%
mutate(across(nodes, ~ lag(lead(., horizon - 1), horizon - 1))) %>%
ungroup() %>%
return()
})
if (n_hor == 1) {
pred <- pred[[1]]
} else {
pred <- pred %>%
set_names(str_c("hor_", horizon))
}
} else {
if (!is.vector(nodes, "character")) {
"nodes is not a character vector" %>%
stop()
}
nodes <- nodes %>%
unique()
n_nodes <- nodes %>%
length()
if (n_nodes == 0) {
"nodes is empty" %>%
stop()
}
if (any(!(nodes %in% nodes_gmdbn))) {
"elements of nodes are not nodes of gmdbn" %>%
stop()
}
nodes <- nodes %>%
sort()
col_n <- prefix %>%
str_c("n")
min_hor <- horizon[1]
n_times_seq <- seq %>%
group_by(across(col_seq)) %>%
summarise(!!col_n := n(), .groups = "drop")
if (max(n_times_seq[[col_n]], 0) < min_hor) {
nodes_0 <- numeric() %>%
matrix(0, n_nodes, dimnames = list(NULL, nodes)) %>%
as_tibble()
pred <- seq %>%
bind_rows(nodes_0)
if (n_hor > 1) {
pred <- pred %>%
list() %>%
rep(n_hor) %>%
set_names(str_c("hor_", horizon))
}
} else {
if (!is.vector(n_part, "numeric")) {
"n_part is not a numeric value" %>%
stop()
}
if (length(n_part) != 1) {
"n_part is not of length 1" %>%
stop()
}
if (!is.finite(n_part)) {
"n_part is not finite" %>%
stop()
}
if (n_part <= 0) {
"n_part is not positive" %>%
stop()
}
if (round(n_part) != n_part) {
"n_part is not an integer" %>%
stop()
}
if (!is.vector(max_part_sim, "numeric")) {
"max_part_sim is not a numeric value" %>%
stop()
}
if (length(max_part_sim) != 1) {
"max_part_sim is not of length 1" %>%
stop()
}
if (is.na(max_part_sim)) {
"max_part_sim is NA" %>%
stop()
}
if (max_part_sim < n_part) {
"max_part_sim is lower than n_part" %>%
stop()
}
if (round(max_part_sim) != max_part_sim) {
"max_part_sim is not an integer" %>%
stop()
}
if (!is.vector(verbose, "logical")) {
"verbose is not a logical value" %>%
stop()
}
if (length(verbose) != 1) {
"verbose is not of length 1" %>%
stop()
}
if (is.na(verbose)) {
"verbose is NA" %>%
stop()
}
n_nodes_gmdbn <- nodes_gmdbn %>%
length()
if (n_nodes < n_nodes_gmdbn) {
evid_nodes <- evid %>%
select(any_of(nodes_gmdbn))
evid_pred_nodes <- evid_pred %>%
select(any_of(col_evid_prop)) %>%
group_by(across(col_seq)) %>%
mutate(!!col_time := seq_len(n())) %>%
ungroup() %>%
left_join(seq_time, ., by = col_seq_time) %>%
select(any_of(nodes_gmdbn))
nodes_obs <- evid_nodes %>%
select(where(~ !any(is.na(.)))) %>%
colnames()
nodes_obs <- evid_pred_nodes %>%
select(where(~ !any(is.na(.)))) %>%
colnames() %>%
intersect(nodes_obs)
nodes_miss <- evid_nodes %>%
select(where(~ all(is.na(.)))) %>%
colnames() %>%
c(setdiff(nodes_gmdbn, colnames(evid_nodes)))
nodes_miss <- evid_pred_nodes %>%
select(where(~ all(is.na(.)))) %>%
colnames() %>%
c(setdiff(nodes_gmdbn, colnames(evid_nodes))) %>%
intersect(nodes_miss)
gmdbn <- gmdbn %>%
relevant(nodes, nodes_obs, nodes_miss)
nodes_gmdbn <- gmdbn$b_1 %>%
names()
n_nodes_gmdbn <- nodes_gmdbn %>%
length()
col_evid_prop <- col_seq %>%
c(nodes_gmdbn)
}
col_sub <- prefix %>%
str_c("sub")
col_weight <- prefix %>%
str_c("weight")
col_prop <- col_seq %>%
c(col_weight)
n_prop <- struct$arcs %>%
bind_rows() %>%
filter(from %in% nodes_gmdbn, to %in% nodes_gmdbn) %>%
.$lag %>%
max(0) - 1
if (n_prop >= 0) {
col_prop <- col_prop %>%
c(str_c(rep(str_c(nodes_gmdbn, "."), n_prop),
rep(rev(seq_len(n_prop)), each = length(nodes_gmdbn))),
nodes_gmdbn)
}
evid <- evid %>%
select(any_of(col_evid_prop))
evid_pred <- evid_pred %>%
select(any_of(col_evid_prop))
times_gmbn <- gmdbn %>%
names() %>%
str_remove("b_") %>%
as.numeric() %>%
c(Inf)
time_gmbn <- 1
i_gmbn <- 1
seq_time_hor <- horizon %>%
last() %>%
seq_len()
names_hor <- "hor_" %>%
str_c(horizon)
list_pred <- list()
n_sub <- (nrow(n_times_seq) * n_part - 1) %/% max_part_sim + 1
pred <- n_times_seq %>%
mutate(!!col_sub := ntile(!!sym(col_n), n_sub)) %>%
group_by(across(col_sub)) %>%
group_map(function(n_times_seq, sub) {
if (verbose) {
verb <- "subset " %>%
str_c(sub[[col_sub]], " / ", n_sub)
"\n" %>%
c(verb, "\n", rep("-", str_length(verb)), "\n") %>%
str_c(collapse = "") %>%
cat()
}
seq <- n_times_seq %>%
select(all_of(col_seq))
if (n_sub > 1) {
evid <- seq %>%
inner_join(evid, by = col_seq)
evid_pred <- seq %>%
inner_join(evid_pred, by = col_seq)
}
part <- seq %>%
particles(col_weight = col_weight, n_part = n_part)
max_time <- n_times_seq[[col_n]] %>%
max(0) - min_hor
for (time in 0:max_time) {
if (verbose) {
"time " %>%
str_c(time, " / ", max_time, "\n") %>%
cat()
}
if (time > 0) {
evid_time <- evid %>%
group_by(across(col_seq)) %>%
slice(time) %>%
ungroup()
if (is_col_seq) {
part <- part %>%
semi_join(evid_time, by = col_seq)
}
part <- part %>%
select(any_of(col_prop))
if (time == time_gmbn) {
gmbn <- gmdbn[[i_gmbn]]
i_gmbn <- i_gmbn + 1
time_gmbn <- times_gmbn[i_gmbn]
}
part <- part %>%
propagation(gmbn, evid_time, col_seq = col_seq,
col_weight = col_weight, min_ess = min_ess)
gmbn_pred <- gmbn
}
part_pred <- part
i_gmbn_pred <- i_gmbn
time_gmbn_pred <- time_gmbn
pred_time <- list()
for (time_hor in seq_time_hor) {
time_pred <- time + time_hor
evid_time_pred <- evid_pred %>%
group_by(across(col_seq)) %>%
slice(time_pred) %>%
ungroup()
if (time_pred == time_gmbn_pred) {
gmbn_pred <- gmdbn[[i_gmbn_pred]]
i_gmbn_pred <- i_gmbn_pred + 1
time_gmbn_pred <- times_gmbn[i_gmbn_pred]
}
part_pred <- part_pred %>%
propagation(gmbn_pred, evid_time_pred, col_seq = col_seq,
col_weight = col_weight, min_ess = min_ess)
if (time_hor %in% horizon) {
pred_time_hor <- part_pred %>%
aggregation(nodes, col_seq = col_seq, col_weight = col_weight)
pred_time <- pred_time %>%
c(list(pred_time_hor))
}
}
pred_time <- pred_time %>%
set_names(names_hor)
list_pred <- list_pred %>%
c(list(pred_time))
}
list_pred %>%
return()
})
col_pred <- col_seq %>%
c(nodes)
pred <- pred %>%
flatten() %>%
transpose() %>%
map2(horizon, function(pred, horizon) {
pred %>%
bind_rows() %>%
group_by(across(col_seq)) %>%
mutate(!!col_time := seq_len(n())) %>%
ungroup() %>%
left_join(seq_time, ., by = col_seq_time) %>%
group_by(across(col_seq)) %>%
mutate(across(nodes, ~ lag(., horizon - 1))) %>%
ungroup() %>%
select(all_of(col_pred)) %>%
return()
})
if (n_hor == 1) {
pred <- pred[[1]]
}
}
}
pred %>%
return()
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.