R/model.R

Defines functions rModel.gnn_Model rModel Model

### Model super-class ##########################################################

##' @title Constructor for the Super-Class gnn_Model
##' @param name character string of the constructor of an object of class
##'        "Copula" or "gnn_GNN"
##' @param ... additional parameters passed on to the constructor
##' @return An object of class "gnn_Model"
##' @author Marius Hofert
##' @note Allows for easier comparison of copulas and neural networks
Model <- function(name, ...)
{
    model <- do.call(name, args = list(...))
    res <- if(inherits(model, "Copula")) {
               param <- catch(nParam(model))$value
               structure(list(model = model,
                              type = "Copula",
                              n.param = if(is.null(param)) NA_integer_ else param, # NA for those copulas for which nParam() fails
                              method = NA_character_,
                              n.train = NA_integer_,
                              time = system.time(NULL)),
                         class = c(as.vector(class(model)), "copula", "gnn_Model"))
           } else if(inherits(model, "gnn_GNN")) {
               ## 'model' already has the right (S3) structure and inherits from 'gnn_Model'
               stopifnot("gnn_Model" %in% class(model)) # check
               model
           } else stop("Wrong 'model'")
    res
}


### Super-class random number generation #######################################

rModel <- function(x, ...)  UseMethod("rModel") # generic

##' @title Sampling Method for Objects of Class "gnn_Model"
##' @param x object of S3 class "gnn_Model" to be sampled from
##' @param size sample size
##' @param prior NULL or a (size, d)-matrix of prior samples
##' @param pobs logical indicating whether pobs() is applied to the output
##'        before returning
##' @param ... additional arguments passed to the underlying functions
##' @return Sample from the model
##' @author Marius Hofert
rModel.gnn_Model <- function(x, size, prior = NULL, pobs = FALSE, ...)
{
    stopifnot(inherits(x, "gnn_Model"), size >= 0)
    switch(x[["type"]],
           "FNN" = {
               rGNN(x, size = size, prior = prior, pobs = pobs, ...)
           },
           "Copula" = {
               res <- if(is.null(prior)) {
                          rCopula(size, copula = x[["model"]], ...)
                      } else { # if 'prior' is provided, compute the inverse Rosenblatt transform
                          copula <- x[["model"]]
                          if(!inherits(copula, "indepCopula") && # those having an inverse Rosenblatt transform
                             !inherits(copula, "claytonCopula") &&
                             !inherits(copula, "normalCopula") &&
                             !inherits(copula, "tCopula"))
                              stop("For prior != NULL, x[[\"model\"]] must currently be an independence, Clayton, normal or t copula.")
                          cCopula(prior, copula = copula, inverse = TRUE, ...)
                      }
               if(pobs) pobs(res) else res
           },
           stop("Wrong 'type'"))
}

Try the gnn package in your browser

Any scripts or data that you put into this service are public.

gnn documentation built on May 29, 2024, 6:13 a.m.