Nothing
# Copyright (c) 2022 Merck Sharp & Dohme Corp. a subsidiary of Merck & Co., Inc., Rahway, NJ, USA.
#
# This file is part of the gsDesign2 program.
#
# gsDesign2 is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#' @importFrom tibble tibble
#' @importFrom gsDesign gsDesign sfLDOF
#' @importFrom stats qnorm
#' @importFrom dplyr mutate full_join select arrange desc
NULL
#' Group sequential design using average hazard ratio under non-proportional hazards
#'
#' @param enrollRates enrollment rates
#' @param failRates failure and dropout rates
#' @param ratio Experimental:Control randomization ratio (not yet implemented)
#' @param alpha One-sided Type I error
#' @param beta Type II error
#' @param IF Targeted information fraction at each analysis
#' @param analysisTimes Minimum time of analysis
#' @param binding indicator of whether futility bound is binding; default of FALSE is recommended
#' @param upper Function to compute upper bound
#' @param upar Parameter passed to \code{upper()}
#' @param lower Function to compute lower bound
#' @param lpar Parameter passed to \code{lower()}
#' @param h1_spending Indicator that lower bound to be set by spending under alternate hypothesis (input \code{failRates})
#' if spending is used for lower bound
#' @param test_upper indicator of which analyses should include an upper (efficacy) bound; single value of TRUE (default) indicates all analyses;
#' otherwise, a logical vector of the same length as \code{info} should indicate which analyses will have an efficacy bound
#' @param test_lower indicator of which analyses should include an lower bound; single value of TRUE (default) indicates all analyses;
#' single value FALSE indicated no lower bound; otherwise, a logical vector of the same length as \code{info} should indicate which analyses will have a
#' lower bound
#' @param r Integer, at least 2; default of 18 recommended by Jennison and Turnbull
#' @param tol Tolerance parameter for boundary convergence (on Z-scale)
#' @section Specification:
#' \if{latex}{
#' \itemize{
#' \item Validate if input analysisTimes is a positive number or positive increasing sequence.
#' \item Validate if input IF is a positive number or positive increasing sequence
#' on (0, 1] with final value of 1.
#' \item Validate if input IF and analysisTimes have the same length if both have length > 1.
#' \item Get information at input analysisTimes
#' \itemize{
#' \item Use \code{gs_info_ahr()} to get the information and effect size based on AHR approximation.
#' \item Extract the final event.
#' \item Check if input If needed for (any) interim analysis timing.
#' }
#' \item Add the analysis column to the information at input analysisTimes.
#' \item Add the sample size column to the information at input analysisTimes using \code{eAccrual()}.
#' \item Get sample size and bounds using \code{gs_design_npe()} and save them to bounds.
#' \item Add Time, Events, AHR, N that have already been calculated to the bounds.
#' \item Return a list of design enrollment, failure rates, and bounds.
#' }
#' }
#' \if{html}{The contents of this section are shown in PDF user manual only.}
#'
#' @return a \code{tibble} with columns Analysis, Bound, Z, Probability, theta, Time, AHR, Events
#' @details Need to be added
#' @noRd
#'
#' @examples
#' library(gsDesign)
#' library(gsDesign2)
#' library(dplyr)
#' # call with defaults
#' gs_design_ahr()
#'
#' # Single analysis
#' gs_design_ahr(analysisTimes = 40)
#'
#' # Multiple analysisTimes
#' gs_design_ahr(analysisTimes = c(12, 24, 36))
#'
#' # Specified information fraction
#' gs_design_ahr(IF = c(.25, .75, 1), analysisTimes = 36)
#'
#' # multiple analysis times & IF
#' # driven by times
#' gs_design_ahr(IF = c(.25, .75, 1), analysisTimes = c(12, 25, 36))
#' # driven by IF
#' gs_design_ahr(IF = c(1 / 3, .8, 1), analysisTimes = c(12, 25, 36))
#'
#' # 2-sided symmetric design with O'Brien-Fleming spending
#' gs_design_ahr(
#' analysisTimes = c(12, 24, 36),
#' binding = TRUE,
#' upper = gs_spending_bound,
#' upar = list(
#' sf = gsDesign::sfLDOF, total_spend = 0.025,
#' param = NULL, timing = NULL
#' ),
#' lower = gs_spending_bound,
#' lpar = list(
#' sf = gsDesign::sfLDOF, total_spend = 0.025,
#' param = NULL, timing = NULL
#' ),
#' h1_spending = FALSE
#' )
#'
#' # 2-sided asymmetric design with O'Brien-Fleming upper spending
#' # Pocock lower spending under H1 (NPH)
#' gs_design_ahr(
#' analysisTimes = c(12, 24, 36),
#' binding = TRUE,
#' upper = gs_spending_bound,
#' upar = list(
#' sf = gsDesign::sfLDOF, total_spend = 0.025,
#' param = NULL, timing = NULL
#' ),
#' lower = gs_spending_bound,
#' lpar = list(
#' sf = gsDesign::sfLDPocock, total_spend = 0.1,
#' param = NULL, timing = NULL
#' ),
#' h1_spending = TRUE
#' )
gs_design_ahr_ <- function(enrollRates = tibble::tibble(
Stratum = "All",
duration = c(2, 2, 10),
rate = c(3, 6, 9)
),
failRates = tibble::tibble(
Stratum = "All",
duration = c(3, 100),
failRate = log(2) / c(9, 18),
hr = c(.9, .6),
dropoutRate = rep(.001, 2)
),
ratio = 1, # Experimental:Control randomization ratio
alpha = 0.025, # One-sided Type I error
beta = 0.1, # NULL if enrollment is not adapted
IF = NULL, # relative information fraction timing (vector, if not NULL; increasing to 1)
analysisTimes = 36, # Targeted times of analysis or just planned study duration
binding = FALSE,
upper = gs_spending_bound,
# Default is LDOF
upar = list(sf = gsDesign::sfLDOF, total_spend = alpha),
lower = gs_spending_bound,
lpar = list(sf = gsDesign::sfLDOF, total_spend = beta),
h1_spending = TRUE,
test_upper = TRUE,
test_lower = TRUE,
r = 18,
tol = 1e-6) {
################################################################################
# Check input values
msg <- "analysisTimes must be a positive number or positive increasing sequence"
if (!is.vector(analysisTimes, mode = "numeric")) stop(msg)
if (min(analysisTimes - dplyr::lag(analysisTimes, def = 0)) <= 0) stop(msg)
msg <- "gs_design_ahr(): IF must be a positive number or positive increasing sequence on (0, 1] with final value of 1"
if (is.null(IF)) {
IF <- 1
}
if (!is.vector(IF, mode = "numeric")) stop(msg)
if (min(IF - dplyr::lag(IF, def = 0)) <= 0) stop(msg)
if (max(IF) != 1) stop(msg)
msg <- "gs_design_ahr() IF and analysisTimes must have the same length if both have length > 1"
if ((length(analysisTimes) > 1) & (length(IF) > 1) & (length(IF) != length(analysisTimes))) stop(msg)
# end check input values
################################################################################
# Get information at input analysisTimes
y <- gs_info_ahr_(enrollRates, failRates, ratio = ratio, events = NULL, analysisTimes = analysisTimes)
finalEvents <- y$Events[nrow(y)]
IFalt <- y$Events / finalEvents
# Check if IF needed for (any) IA timing
K <- max(length(analysisTimes), length(IF))
nextTime <- max(analysisTimes)
if (length(IF) == 1) {
IF <- IFalt
} else {
IFindx <- IF[1:(K - 1)]
for (i in seq_along(IFindx)) {
if (length(IFalt) == 1) {
y <-
rbind(
tEvents_(enrollRates, failRates,
targetEvents = IF[K - i] * finalEvents, ratio = ratio,
interval = c(.01, nextTime)
) %>% dplyr::mutate(theta = -log(AHR), Analysis = K - i),
y
)
} else if (IF[K - i] > IFalt[K - i]) {
y[K - i, ] <-
tEvents_(enrollRates, failRates,
targetEvents = IF[K - i] * finalEvents, ratio = ratio,
interval = c(.01, nextTime)
) %>%
dplyr::transmute(Analysis = K - i, Time, Events, AHR, theta = -log(AHR), info, info0)
}
nextTime <- y$Time[K - i]
}
}
y$Analysis <- 1:K
y$N <- eAccrual_(x = y$Time, enrollRates = enrollRates)
if (h1_spending) {
theta1 <- y$theta
info1 <- y$info
} else {
theta1 <- 0
info1 <- y$info0
}
# Get sample size and bounds using gs_design_npe
bounds <- gs_design_npe_(
theta = y$theta,
theta1 = theta1,
info = y$info,
info0 = y$info0,
info1 = info1,
alpha = alpha,
beta = beta,
binding = binding,
upper = upper,
lower = lower,
upar = upar,
lpar = lpar,
test_upper = test_upper,
test_lower = test_lower,
r = r,
tol = tol
) %>%
# Add Time, Events, AHR, N from gs_info_ahr call above
dplyr::full_join(y %>% dplyr::select(-c(info, info0, theta)), by = "Analysis") %>%
dplyr::select(c("Analysis", "Bound", "Time", "N", "Events", "Z", "Probability", "AHR", "theta", "info", "info0")) %>%
dplyr::arrange(dplyr::desc(Bound), Analysis)
bounds$Events <- bounds$Events * bounds$info[K] / y$info[K]
bounds$N <- bounds$N * bounds$info[K] / y$info[K]
# Document design enrollment, failure rates, and bounds
return(list(
enrollRates = enrollRates %>%
dplyr::mutate(rate = rate * bounds$info[K] / y$info[K]),
failRates = failRates,
bounds = bounds
))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.