tests/testthat/helper-old-version-gs_power_npe_.R

#  Copyright (c) 2022 Merck Sharp & Dohme Corp. a subsidiary of Merck & Co., Inc., Rahway, NJ, USA.
#
#  This file is part of the gsDesign2 program.
#
#  gsDesign2 is free software: you can redistribute it and/or modify
#  it under the terms of the GNU General Public License as published by
#  the Free Software Foundation, either version 3 of the License, or
#  (at your option) any later version.
#
#  This program is distributed in the hope that it will be useful,
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#  GNU General Public License for more details.
#
#  You should have received a copy of the GNU General Public License
#  along with this program.  If not, see <http://www.gnu.org/licenses/>.

#' @importFrom tibble tibble
#' @importFrom stats qnorm pnorm
NULL
#' Group sequential bound computation with non-constant effect
#'
#' \code{gs_power_npe()} derives group sequential bounds and boundary crossing probabilities for a design.
#' It allows a non-constant treatment effect over time, but also can be applied for the usual homogeneous effect size designs.
#' It requires treatment effect and statistical information at each analysis as well as a method of deriving bounds, such as spending.
#' The routine enables two things not available in the gsDesign package: 1) non-constant effect, 2) more flexibility in boundary selection.
#' For many applications, the non-proportional-hazards design function \code{gs_design_nph()} will be used; it calls this function.
#' Initial bound types supported are 1) spending bounds, 2) fixed bounds, and 3) Haybittle-Peto-like bounds.
#' The requirement is to have a boundary update method that can each bound without knowledge of future bounds.
#' As an example, bounds based on conditional power that require knowledge of all future bounds are not supported by this routine;
#' a more limited conditional power method will be demonstrated.
#' Boundary family designs Wang-Tsiatis designs including the original (non-spending-function-based) O'Brien-Fleming and Pocock designs
#' are not supported by \code{gs_power_npe()}.
#' @param theta natural parameter for group sequential design representing
#' expected incremental drift at all analyses; used for power calculation
#' @param theta1 natural parameter for alternate hypothesis, if needed for lower bound computation
#' @param info statistical information at all analyses for input \code{theta}
#' @param info0 statistical information under null hypothesis, if different than \code{info};
#' impacts null hypothesis bound calculation
#' @param info1 statistical information under hypothesis used for futility bound calculation if different from
#' \code{info}; impacts futility hypothesis bound calculation
#' @param binding indicator of whether futility bound is binding; default of FALSE is recommended
#' @param upper function to compute upper bound
#' @param lower function to compare lower bound
#' @param upar parameter to pass to upper
#' @param lpar parameter to pass to lower
#' @param test_upper indicator of which analyses should include an upper (efficacy) bound;
#' single value of TRUE (default)  indicates all analyses; otherwise,
#' a logical vector of the same length as \code{info} should indicate which analyses will have an efficacy bound
#' @param test_lower indicator of which analyses should include a lower bound;
#' single value of TRUE (default) indicates all analyses;
#' single value FALSE indicated no lower bound; otherwise,
#' a logical vector of the same length as \code{info} should indicate which analyses will have a lower bound
#' @param r  Integer, at least 2; default of 18 recommended by Jennison and Turnbull
#' @param tol Tolerance parameter for boundary convergence (on Z-scale)
#' @section Specification:
#' \if{latex}{
#'  \itemize{
#'    \item Extract the length of input info as the number of interim analysis.
#'    \item Validate if input info0 is NULL, so set it equal to info.
#'    \item Validate if input info1 is NULL, so set it equal to info.
#'    \item Validate if the length of inputs info, info0, and info1 are the same.
#'    \item Validate if input theta is a scalar, so replicate the value for all k interim analysis.
#'    \item Validate if input theta1 is NULL and if it is a scalar. If it is NULL,
#'    set it equal to input theta. If it is a scalar, replicate the value for all k interim analysis.
#'    \item Validate if input test_upper is a scalar, so replicate the value for all k interim analysis.
#'    \item Validate if input test_lower is a scalar, so replicate the value for all k interim analysis.
#'    \item Define vector a to be -Inf with length equal to the number of interim analysis.
#'    \item Define vector b to be Inf with length equal to the number of interim analysis.
#'    \item Define hgm1_0 and hgm1 to be NULL.
#'    \item Define upperProb and lowerProb to be vectors of NA with length of the number of interim analysis.
#'    \item Update lower and upper bounds using \code{gs_b()}.
#'    \item If there are no interim analysis, compute proabilities of crossing upper and lower bounds
#'    using \code{h1()}.
#'    \item Compute cross upper and lower bound probabilities using \code{hupdate()} and \code{h1()}.
#'    \item Return a tibble of analysis number, Bounds, Z-values, Probability of crossing bounds,
#'    theta, theta1, info, info0, and info1
#'   }
#' }
#' \if{html}{The contents of this section are shown in PDF user manual only.}
#'
#' @author Keaven Anderson \email{keaven_anderson@@merck.com}
#'
#'
#' @examples
#'
#' library(gsDesign)
#' library(gsDesign2)
#' library(dplyr)
#'
#' # Default (single analysis; Type I error controlled)
#' gsDesign2:::gs_power_npe_(theta = 0) %>% dplyr::filter(Bound == "Upper")
#'
#' # Fixed bound
#' gsDesign2:::gs_power_npe_(
#'   theta = c(.1, .2, .3), info = (1:3) * 40, info0 = (1:3) * 40,
#'   upper = gs_b,
#'   upar = gsDesign::gsDesign(
#'     k = 3,
#'     sfu = gsDesign::sfLDOF
#'   )$upper$bound,
#'   lower = gs_b,
#'   lpar = c(-1, 0, 0)
#' )
#'
#' # Same fixed efficacy bounds,
#' # no futility bound (i.e., non-binding bound), null hypothesis
#' gsDesign2:::gs_power_npe_(
#'   theta = rep(0, 3),
#'   info = (1:3) * 40,
#'   upar = gsDesign::gsDesign(
#'     k = 3,
#'     sfu = gsDesign::sfLDOF
#'   )$upper$bound,
#'   lpar = rep(-Inf, 3)
#' ) %>% dplyr::filter(Bound == "Upper")
#'
#' # Fixed bound with futility only at analysis 1;
#' # efficacy only at analyses 2, 3
#' gsDesign2:::gs_power_npe_(
#'   theta = c(.1, .2, .3),
#'   info = (1:3) * 40,
#'   upar = c(Inf, 3, 2),
#'   lpar = c(qnorm(.1), -Inf, -Inf)
#' )
#'
#' # Spending function bounds
#' # Lower spending based on non-zero effect
#' gsDesign2:::gs_power_npe_(
#'   theta = c(.1, .2, .3),
#'   info = (1:3) * 40,
#'   upper = gs_spending_bound,
#'   upar = list(
#'     sf = gsDesign::sfLDOF,
#'     total_spend = 0.025,
#'     param = NULL,
#'     timing = NULL
#'   ),
#'   lower = gs_spending_bound,
#'   lpar = list(
#'     sf = gsDesign::sfHSD,
#'     total_spend = 0.1,
#'     param = -1,
#'     timing = NULL
#'   )
#' )
#'
#' # Same bounds, but power under different theta
#' gsDesign2:::gs_power_npe_(
#'   theta = c(.15, .25, .35),
#'   theta1 = c(.1, .2, .3),
#'   info = (1:3) * 40,
#'   upper = gs_spending_bound,
#'   upar = list(
#'     sf = gsDesign::sfLDOF,
#'     total_spend = 0.025,
#'     param = NULL,
#'     timing = NULL
#'   ),
#'   lower = gs_spending_bound,
#'   lpar = list(
#'     sf = gsDesign::sfHSD,
#'     total_spend = 0.1,
#'     param = -1,
#'     timing = NULL
#'   )
#' )
#'
#' # Two-sided symmetric spend, O'Brien-Fleming spending
#' # Typically, 2-sided bounds are binding
#' xx <- gsDesign2:::gs_power_npe_(
#'   theta = rep(0, 3),
#'   theta1 = rep(0, 3),
#'   info = (1:3) * 40,
#'   upper = gs_spending_bound,
#'   binding = TRUE,
#'   upar = list(
#'     sf = gsDesign::sfLDOF,
#'     total_spend = 0.025,
#'     param = NULL,
#'     timing = NULL
#'   ),
#'   lower = gs_spending_bound,
#'   lpar = list(
#'     sf = gsDesign::sfLDOF,
#'     total_spend = 0.025,
#'     param = NULL,
#'     timing = NULL
#'   )
#' )
#' xx
#'
#' # Re-use these bounds under alternate hypothesis
#' # Always use binding = TRUE for power calculations
#' upar <- (xx %>% dplyr::filter(Bound == "Upper"))$Z
#' gsDesign2:::gs_power_npe_(
#'   theta = c(.1, .2, .3),
#'   info = (1:3) * 40,
#'   binding = TRUE,
#'   upar = upar,
#'   lpar = -upar
#' )
#'
#' @noRd
gs_power_npe_ <- function(theta = .1, theta1 = NULL, info = 1, info1 = NULL, info0 = NULL,
                          binding = FALSE,
                          upper = gs_b, lower = gs_b, upar = qnorm(.975), lpar = -Inf,
                          test_upper = TRUE, test_lower = TRUE,
                          r = 18, tol = 1e-6) {
  #######################################################################################
  # WRITE INPUT CHECK TESTS AND RETURN APPROPRIATE ERROR MESSAGES
  # theta should be a scalar or vector of real values; if vector, same length as info
  # info should be a scalar or vector of positive increasing values
  # info0 should be NULL or of the same form as info
  # test_upper and test_lower should be logical scalar or vector; if vector same length as info
  # END INPUT CHECKS
  #######################################################################################
  # SET UP PARAMETERS
  K <- length(info)
  if (is.null(info0)) info0 <- info
  if (is.null(info1)) info1 <- info
  if (length(info1) != length(info) || length(info0) != length(info)) stop("gs_power_npe: length of info, info0, info1 must be the same")
  if (length(theta) == 1 && K > 1) theta <- rep(theta, K)
  if (is.null(theta1)) {
    theta1 <- theta
  } else if (length(theta1) == 1) theta1 <- rep(theta1, K)
  if (length(test_upper) == 1 && K > 1) test_upper <- rep(test_upper, K)
  if (length(test_lower) == 1 && K > 1) test_lower <- rep(test_lower, K)
  a <- rep(-Inf, K)
  b <- rep(Inf, K)
  hgm1_0 <- NULL
  hgm1_1 <- NULL
  hgm1 <- NULL
  upperProb <- rep(NA, K)
  lowerProb <- rep(NA, K)
  ######################################################################################
  # COMPUTE BOUNDS
  for (k in 1:K) {
    # Lower bound update
    a[k] <- lower(
      k = k, par = lpar, hgm1 = hgm1_1, theta = theta1, info = info1, r = r, tol = tol, test_bound = test_lower,
      efficacy = FALSE
    )
    # Upper bound update
    b[k] <- upper(k = k, par = upar, hgm1 = hgm1_0, info = info0, r = r, tol = tol, test_bound = test_upper)
    if (k == 1) {
      upperProb[1] <- if (b[1] < Inf) {
        pnorm(sqrt(info[1]) * (theta[1] - b[1] / sqrt(info0[1])))
      } else {
        0
      }
      lowerProb[1] <- if (a[1] > -Inf) {
        pnorm(-sqrt(info[1]) * (theta[1] - a[1] / sqrt(info0[1])))
      } else {
        0
      }

      hgm1_0 <- gsDesign2:::h1(r = r, theta = 0, info = info0[1], a = if (binding) {
        a[1]
      } else {
        -Inf
      }, b = b[1])

      hgm1_1 <- gsDesign2:::h1(r = r, theta = theta1[1], info = info1[1], a = a[1], b = b[1])

      hgm1 <- gsDesign2:::h1(r = r, theta = theta[1], info = info[1], a = a[1], b = b[1])
    } else {
      # Cross upper bound
      upperProb[k] <- if (b[k] < Inf) {
        # hupdate(r = r, theta = theta[k], info = info[k], a = b[k], b = Inf,
        #         thetam1 = theta[k - 1], im1 = info[k - 1], gm1 = hgm1) %>%
        #   summarise(sum(h)) %>% as.numeric()
        sum(gsDesign2:::hupdate(
          r = r, theta = theta[k], info = info[k], a = b[k], b = Inf,
          thetam1 = theta[k - 1], im1 = info[k - 1], gm1 = hgm1
        )$h)
      } else {
        0
      }
      # Cross lower bound
      lowerProb[k] <- if (a[k] > -Inf) {
        # hupdate(r = r, theta = theta[k], info = info[k], a = -Inf, b = a[k],
        #         thetam1 = theta[k - 1], im1 = info[k - 1], gm1 = hgm1) %>%
        #   summarise(sum(h)) %>% as.numeric()
        sum(gsDesign2:::hupdate(
          r = r, theta = theta[k], info = info[k], a = -Inf, b = a[k],
          thetam1 = theta[k - 1], im1 = info[k - 1], gm1 = hgm1
        )$h)
      } else {
        0
      }
      if (k < K) {
        # hgm1_0 <- hupdate(r = r, theta = 0, info = info0[k], a = if(binding){a[k]}else{-Inf}, b = b[k],
        #                   thetam1 = 0, im1 = info0[k-1], gm1 = hgm1_0)
        hgm1_0 <- gsDesign2:::hupdate(
          r = r, theta = 0, info = info0[k], a = if (binding) {
            a[k]
          } else {
            -Inf
          }, b = b[k],
          thetam1 = 0, im1 = info0[k - 1], gm1 = hgm1_0
        )
        # hgm1_1 <- hupdate(r = r, theta = theta1[k], info = info1[k], a = a[k], b = b[k],
        #                   thetam1 = theta1[k-1], im1 = info1[k-1], gm1 = hgm1_1)
        hgm1_1 <- gsDesign2:::hupdate(
          r = r, theta = theta1[k], info = info1[k], a = a[k], b = b[k],
          thetam1 = theta1[k - 1], im1 = info1[k - 1], gm1 = hgm1_1
        )
        # hgm1   <- hupdate(r = r, theta = theta[k], info = info[k], a = a[k], b = b[k],
        #                   thetam1 = theta[k-1], im1 = info[k-1], gm1 = hgm1)
        hgm1 <- gsDesign2:::hupdate(
          r = r, theta = theta[k], info = info[k], a = a[k], b = b[k],
          thetam1 = theta[k - 1], im1 = info[k - 1], gm1 = hgm1
        )
      }
    }
  }
  return(tibble::tibble(
    Analysis = rep(1:K, 2),
    Bound = c(rep("Upper", K), rep("Lower", K)),
    Z = c(b, a),
    Probability = c(
      cumsum(upperProb),
      cumsum(lowerProb)
    ),
    theta = rep(theta, 2),
    theta1 = rep(theta1, 2),
    info = rep(info, 2),
    info0 = rep(info0, 2),
    info1 = rep(info1, 2)
  ))
}

Try the gsDesign2 package in your browser

Any scripts or data that you put into this service are public.

gsDesign2 documentation built on April 3, 2025, 9:39 p.m.