inst/doc/permutation-options.R

## ---- include = FALSE---------------------------------------------------------
knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>"
)

## ---- echo=FALSE, fig.width=18, fig.height=12, message=FALSE, warning=FALSE----
library(tidyverse)
library(cowplot)
library(gscramble)


N <- 12
L <- 15
G <- matrix(paste0(1:N, rep(c("a", "b"), each = 12)), nrow = N, ncol = 2 * L)

# make the meta data to go with these
Im <- tibble(
  group = rep(c("pop1", "pop2", "pop3"), times = c(5, 4, 3)),
  indiv = str_c("ind_", 1:N)
)

Mm <- tibble(
  chrom = rep(c("1", "2", "3"), times = c(4, 5, 6)),
) %>%
  group_by(chrom) %>%
  mutate(
    pos = 1500 * 1:n(),
    variant_id = str_c("marker_", chrom, "_", pos)
  )



# turn a matrix with N rows and 2L columns into a tibble
# that names the individual gene copies
gmat2tib <- function(M) {
  if(ncol(M) %% 2 != 0) stop("Must be an even number of columns")
  L <- ncol(M) / 2
  N <- nrow(M)
  
  tibble(
    ind = rep(1:N, times = 2 * L),
    loc = rep(1:L, each = 2 * N),
    hap = rep(rep(c("a", "b"), each = N), times = L),
    ind_hap = factor(str_c(ind, hap), levels = paste0(rep(1:N, each = 2), c("a", "b"))),
    alle = as.vector(M)
  )
  
}

tib <- gmat2tib(G)

chrom_counts <- c(4, 5, 6)
chrom_edges <- c(0, cumsum(chrom_counts))

# here we define our color palette for these by hand so we can get the
# first group as blues and greens, the second as reds/pinks and oranges,
# and the third as browns.
indiv_colors <- c(
  "#a6cee3",
  "#1f78b4",
  "cyan",
  "#b2df8a",
  "#33a02c",
  "#fb9a99",
  "#e31a1c",
  "#fdbf6f",
  "#ff7f00",
  "#6a3d9a",
  "#cab2d6",
  "purple2"
)

# now we can plot that.  Let's make a function to do that:
plot_gmat_tib <- function(tib) {
  tib %>% 
    ggplot(aes(x = ind_hap, y = loc)) +
    geom_raster(aes(fill = factor(as.integer(ind)))) +
    geom_tile(fill = NA, color = "black", linewidth = 0.05) +
    geom_text(aes(label = hap)) +
    geom_vline(xintercept = 0.5 + seq(0, 2*N, by = 2)) +
    geom_vline(xintercept = 0.5 + 2 * cumsum(c(5, 4, 3)), linewidth = 1.5) +
    geom_hline(yintercept = 0.5 + chrom_edges, linewidth = 1.5) +
    geom_hline(yintercept = c(-0.5, max(tib$loc) + 0.5), linewidth = 1.5) +
    geom_vline(xintercept = c(-0.5, 0.5 + n_distinct(tib$ind_hap)), linewidth = 1.5) +
    scale_x_discrete(expand = c(0, 0)) +
    scale_y_discrete(expand = c(0, 0)) +
    scale_fill_manual(values = indiv_colors) +
    theme(legend.position = "none") +
    xlab("Haplotypes in 12 diploids in 3 populations") + 
    ylab("Loci on three chromosomes")
}

tib_list <- list()



# this function rearranges the matrix so that
# haplotypes are in columns and markers are in rows
Gr <- rearrange_genos(G, Im, Mm)

# so, we will want to convert that format to a tibble also.
# this function lets us convert ind and hap back to what they were
# originally, after setting ind_hap.  This way we can get the colors
# of the alleles and their original haplotypes that have been permuted into
#the new positions.
rearranged_gmat2tib <- function(M, old_hap_and_ind = FALSE) {
  if(ncol(M) %% 2 != 0) stop("Must be an even number of columns")
  N <- ncol(M) / 2
  L <- nrow(M)
  
  ret <- tibble(
    ind = rep(1:N, each = 2 * L),
    loc = rep(1:L, times = 2 * N),
    hap = rep(rep(c("a", "b"), each = L), times = N),
    ind_hap = factor(str_c(ind, hap), levels = paste0(rep(1:N, each = 2), c("a", "b"))),
    alle = as.vector(M)
  )
  
  if(old_hap_and_ind == TRUE) {
    ret <- ret %>%
      select(-hap, -ind) %>%
      extract(alle, into = c("ind", "hap"), regex = "^([0-9]+)([ab])$", convert = TRUE)
  }

  ret
}

# then we could read that in
tib_list[["Original Samples"]] <- rearranged_gmat2tib(Gr$G[[1]])



set.seed(5)
Gs_plain_permute <- perm_gs_by_pops(Gr)

plain_perm <- Gs_plain_permute$G_permed[[1]] %>%
  rearranged_gmat2tib(old_hap_and_ind = TRUE)

tib_list[["preserve_individuals = FALSE, preserve_haplotypes = FALSE"]] <- plain_perm


set.seed(5)
Gs_hap_permute <- perm_gs_by_pops(Gr, preserve_haplotypes = TRUE)

tib_list[["preserve_individuals = FALSE, preserve_haplotypes = TRUE"]] <- Gs_hap_permute$G_permed[[1]] %>%
  rearranged_gmat2tib(old_hap_and_ind = TRUE)


set.seed(15)
Gs_hap_permute3 <- perm_gs_by_pops(Gr, preserve_individuals = TRUE)

tib_list[["preserve_individuals = TRUE, preserve_haplotypes = FALSE"]] <- Gs_hap_permute3$G_permed[[1]] %>%
  rearranged_gmat2tib(old_hap_and_ind = TRUE) 


set.seed(21)
Gs_hap_permute4 <- perm_gs_by_pops(Gr, preserve_individuals = TRUE, preserve_haplotypes = TRUE)

tib_list[["preserve_individuals = TRUE, preserve_haplotypes = TRUE"]] <- Gs_hap_permute4$G_permed[[1]] %>%
  rearranged_gmat2tib(old_hap_and_ind = TRUE)



set.seed(21)
by_chrom_haps_false <- perm_gs_by_pops(Gr, preserve_individuals = "BY_CHROM", preserve_haplotypes = FALSE)

tib_list[["preserve_individuals = \"BY_CHROM\", preserve_haplotypes = FALSE"]] <- by_chrom_haps_false$G_permed[[1]] %>%
  rearranged_gmat2tib(old_hap_and_ind = TRUE)


set.seed(25)
by_chrom_haps_true <- perm_gs_by_pops(Gr, preserve_individuals = "BY_CHROM", preserve_haplotypes = TRUE)

tib_list[["preserve_individuals = \"BY_CHROM\", preserve_haplotypes = TRUE"]] <- by_chrom_haps_true$G_permed[[1]] %>%
  rearranged_gmat2tib(old_hap_and_ind = TRUE)


# get just the permuted ones and order them so that they come out the the way want
permed_ones_order <- names(tib_list)[c(2, 6, 4, 3, 7, 5)]
permed_ones <- bind_rows(tib_list[-1], .id = "option") %>%
  mutate(option = factor(option, levels = permed_ones_order))

# get the 6 permed ones in facets
facets6 <- plot_gmat_tib(permed_ones) +
  facet_wrap(~option, ncol = 3) +
  theme(
    axis.text.x = element_text(angle = 90, vjust = 0.5, size = 12), 
    axis.title = element_text(size = 18, face = "bold"), 
    strip.text = element_text(size = 12, face = "bold")
  )

# then get the Original Order as a single one
orig_samples <- plot_gmat_tib(bind_rows(tib_list[1], .id = "option")) +
  facet_wrap(~option, ncol = 1) +
  theme(
    axis.text.x = element_text(size = 12),
    axis.title = element_text(size = 18, face = "bold"), 
    strip.text = element_text(size = 12, face = "bold")
  )

# and now cowplot those together
top_row <- plot_grid(
  NULL, orig_samples, NULL,
  nrow = 1,
  rel_widths = c(1, 2.5 , 1),
  labels = c("", "a)", ""),
  label_x = -0.06,
  label_size = 30
)

bottom_row <- plot_grid(
  facets6, 
  nrow = 1, 
  labels = c("b)"), 
  label_x = -0.004, 
  label_size = 30,
  label_y = 1.1
)

permy_plot <- plot_grid(top_row, bottom_row, ncol = 1, rel_heights = c(1.4, 2))

# mac preview antialiases the hell out of the PDF.  What BS
#ggsave(permy_plot, filename = "results/figures/permutations-plot.pdf", width = 18, height = 12)

# Try the PNG
#ggsave(permy_plot, filename = "results/figures/permutations-plot.png", width = 18, height = 12)

permy_plot

Try the gscramble package in your browser

Any scripts or data that you put into this service are public.

gscramble documentation built on May 29, 2024, 10:58 a.m.