fmt_partsper: Format values as parts-per quantities

View source: R/format_data.R

fmt_partsperR Documentation

Format values as parts-per quantities

Description

With numeric values in a gt table we can format the values so that they are rendered as per mille, ppm, ppb, etc., quantities. The following list of keywords (with associated naming and scaling factors) is available to use within fmt_partsper():

  • "per-mille": Per mille, (1 part in ⁠1,000⁠)

  • "per-myriad": Per myriad, (1 part in ⁠10,000⁠)

  • "pcm": Per cent mille (1 part in ⁠100,000⁠)

  • "ppm": Parts per million, (1 part in ⁠1,000,000⁠)

  • "ppb": Parts per billion, (1 part in ⁠1,000,000,000⁠)

  • "ppt": Parts per trillion, (1 part in ⁠1,000,000,000,000⁠)

  • "ppq": Parts per quadrillion, (1 part in ⁠1,000,000,000,000,000⁠)

The function provides a lot of formatting control and we can use the following options:

  • custom symbol/units: we can override the automatic symbol or units display with our own choice as the situation warrants

  • decimals: choice of the number of decimal places, option to drop trailing zeros, and a choice of the decimal symbol

  • digit grouping separators: options to enable/disable digit separators and provide a choice of separator symbol

  • value scaling toggle: choose to disable automatic value scaling in the situation that values are already scaled coming in (and just require the appropriate symbol or unit display)

  • pattern: option to use a text pattern for decoration of the formatted values

  • locale-based formatting: providing a locale ID will result in number formatting specific to the chosen locale

Usage

fmt_partsper(
  data,
  columns = everything(),
  rows = everything(),
  to_units = c("per-mille", "per-myriad", "pcm", "ppm", "ppb", "ppt", "ppq"),
  symbol = "auto",
  decimals = 2,
  drop_trailing_zeros = FALSE,
  drop_trailing_dec_mark = TRUE,
  scale_values = TRUE,
  use_seps = TRUE,
  pattern = "{x}",
  sep_mark = ",",
  dec_mark = ".",
  force_sign = FALSE,
  incl_space = "auto",
  system = c("intl", "ind"),
  locale = NULL
)

Arguments

data

The gt table data object

⁠obj:<gt_tbl>⁠ // required

This is the gt table object that is commonly created through use of the gt() function.

columns

Columns to target

⁠<column-targeting expression>⁠ // default: everything()

Can either be a series of column names provided in c(), a vector of column indices, or a select helper function (e.g. starts_with(), ends_with(), contains(), matches(), num_range() and everything()).

rows

Rows to target

⁠<row-targeting expression>⁠ // default: everything()

In conjunction with columns, we can specify which of their rows should undergo formatting. The default everything() results in all rows in columns being formatted. Alternatively, we can supply a vector of row captions within c(), a vector of row indices, or a select helper function (e.g. starts_with(), ends_with(), contains(), matches(), num_range(), and everything()). We can also use expressions to filter down to the rows we need (e.g., ⁠[colname_1] > 100 & [colname_2] < 50⁠).

to_units

Output Quantity

⁠singl-kw:[per-mille|per-myriad|pcm|ppm|ppb|ppt|ppq]⁠ // default: "per-mille"

A keyword that signifies the desired output quantity. This can be any from the following set: "per-mille", "per-myriad", "pcm", "ppm", "ppb", "ppt", or "ppq".

symbol

Symbol or units to use in output display

⁠scalar<character>⁠ // default: "auto"

The symbol/units to use for the quantity. By default, this is set to "auto" and gt will choose the appropriate symbol based on the to_units keyword and the output context. However, this can be changed by supplying a string (e.g, using symbol = "ppbV" when to_units = "ppb").

decimals

Number of decimal places

scalar<numeric|integer>(val>=0) // default: 2

This corresponds to the exact number of decimal places to use. A value such as 2.34 can, for example, be formatted with 0 decimal places and it would result in "2". With 4 decimal places, the formatted value becomes "2.3400".

drop_trailing_zeros

Drop any trailing zeros

⁠scalar<logical>⁠ // default: FALSE

A logical value that allows for removal of trailing zeros (those redundant zeros after the decimal mark).

drop_trailing_dec_mark

Drop the trailing decimal mark

⁠scalar<logical>⁠ // default: TRUE

A logical value that determines whether decimal marks should always appear even if there are no decimal digits to display after formatting (e.g., 23 becomes 23. if FALSE). By default trailing decimal marks are not shown.

scale_values

Scale input values accordingly

⁠scalar<logical>⁠ // default: TRUE

Should the values be scaled through multiplication according to the keyword set in to_units? By default this is TRUE since the expectation is that normally values are proportions. Setting to FALSE signifies that the values are already scaled and require only the appropriate symbol/units when formatted.

use_seps

Use digit group separators

⁠scalar<logical>⁠ // default: TRUE

An option to use digit group separators. The type of digit group separator is set by sep_mark and overridden if a locale ID is provided to locale. This setting is TRUE by default.

pattern

Specification of the formatting pattern

⁠scalar<character>⁠ // default: "{x}"

A formatting pattern that allows for decoration of the formatted value. The formatted value is represented by the {x} (which can be used multiple times, if needed) and all other characters will be interpreted as string literals.

sep_mark

Separator mark for digit grouping

⁠scalar<character>⁠ // default: ","

The string to use as a separator between groups of digits. For example, using sep_mark = "," with a value of 1000 would result in a formatted value of "1,000". This argument is ignored if a locale is supplied (i.e., is not NULL).

dec_mark

Decimal mark

⁠scalar<character>⁠ // default: "."

The string to be used as the decimal mark. For example, using dec_mark = "," with the value 0.152 would result in a formatted value of "0,152"). This argument is ignored if a locale is supplied (i.e., is not NULL).

force_sign

Forcing the display of a positive sign

⁠scalar<logical>⁠ // default: FALSE

Should the positive sign be shown for positive values (effectively showing a sign for all values except zero)? If so, use TRUE for this option. The default is FALSE, where only negative numbers will display a minus sign. This option is disregarded when using accounting notation with accounting = TRUE.

incl_space

Include a space between the value and the symbol/units

⁠scalar<character>|scalar<logical>⁠ // default: "auto"

An option for whether to include a space between the value and the symbol/units. The default is "auto" which provides spacing dependent on the mark itself. This can be directly controlled by using either TRUE or FALSE.

system

Numbering system for grouping separators

⁠singl-kw:[intl|ind]⁠ // default: "intl"

The international numbering system (keyword: "intl") is widely used and its grouping separators (i.e., sep_mark) are always separated by three digits. The alternative system, the Indian numbering system (keyword: "ind"), uses grouping separators that correspond to thousand, lakh, crore, and higher quantities.

locale

Locale identifier

⁠scalar<character>⁠ // default: NULL (optional)

An optional locale identifier that can be used for formatting values according the locale's rules. Examples include "en" for English (United States) and "fr" for French (France). We can call info_locales() for a useful reference for all of the locales that are supported. A locale ID can be also set in the initial gt() function call (where it would be used automatically by any function with a locale argument) but a locale value provided here will override that global locale.

Value

An object of class gt_tbl.

Compatibility of formatting function with data values

fmt_partsper() is compatible with body cells that are of the "numeric" or "integer" types. Any other types of body cells are ignored during formatting. This is to say that cells of incompatible data types may be targeted, but there will be no attempt to format them.

Targeting cells with columns and rows

Targeting of values is done through columns and additionally by rows (if nothing is provided for rows then entire columns are selected). The columns argument allows us to target a subset of cells contained in the resolved columns. We say resolved because aside from declaring column names in c() (with bare column names or names in quotes) we can use tidyselect-style expressions. This can be as basic as supplying a select helper like starts_with(), or, providing a more complex incantation like

where(~ is.numeric(.x) && max(.x, na.rm = TRUE) > 1E6)

which targets numeric columns that have a maximum value greater than 1,000,000 (excluding any NAs from consideration).

By default all columns and rows are selected (with the everything() defaults). Cell values that are incompatible with a given formatting function will be skipped over, like character values and numeric ⁠fmt_*()⁠ functions. So it's safe to select all columns with a particular formatting function (only those values that can be formatted will be formatted), but, you may not want that. One strategy is to format the bulk of cell values with one formatting function and then constrain the columns for later passes with other types of formatting (the last formatting done to a cell is what you get in the final output).

Once the columns are targeted, we may also target the rows within those columns. This can be done in a variety of ways. If a stub is present, then we potentially have row identifiers. Those can be used much like column names in the columns-targeting scenario. We can use simpler tidyselect-style expressions (the select helpers should work well here) and we can use quoted row identifiers in c(). It's also possible to use row indices (e.g., c(3, 5, 6)) though these index values must correspond to the row numbers of the input data (the indices won't necessarily match those of rearranged rows if row groups are present). One more type of expression is possible, an expression that takes column values (can involve any of the available columns in the table) and returns a logical vector. This is nice if you want to base formatting on values in the column or another column, or, you'd like to use a more complex predicate expression.

Compatibility of arguments with the from_column() helper function

from_column() can be used with certain arguments of fmt_partsper() to obtain varying parameter values from a specified column within the table. This means that each row could be formatted a little bit differently. These arguments provide support for from_column():

  • to_units

  • symbol

  • decimals

  • drop_trailing_zeros

  • drop_trailing_dec_mark

  • scale_values

  • use_seps

  • pattern

  • sep_mark

  • dec_mark

  • force_sign

  • incl_space

  • system

  • locale

Please note that for all of the aforementioned arguments, a from_column() call needs to reference a column that has data of the correct type (this is different for each argument). Additional columns for parameter values can be generated with cols_add() (if not already present). Columns that contain parameter data can also be hidden from final display with cols_hide(). Finally, there is no limitation to how many arguments the from_column() helper is applied so long as the arguments belong to this closed set.

Adapting output to a specific locale

This formatting function can adapt outputs according to a provided locale value. Examples include "en" for English (United States) and "fr" for French (France). The use of a valid locale ID here means separator and decimal marks will be correct for the given locale. Should any values be provided in sep_mark or dec_mark, they will be overridden by the locale's preferred values.

Note that a locale value provided here will override any global locale setting performed in gt()'s own locale argument (it is settable there as a value received by all other functions that have a locale argument). As a useful reference on which locales are supported, we can call info_locales() to view an info table.

Examples

Create a tibble of small numeric values and generate a gt table. Format the a column to appear in scientific notation with fmt_scientific() and format the b column as per mille values with fmt_partsper().

dplyr::tibble(x = 0:-5, a = 10^(0:-5), b = a) |>
  gt(rowname_col = "x") |>
  fmt_scientific(a, decimals = 0) |>
  fmt_partsper(
    columns = b,
    to_units = "per-mille"
  )
This image of a table was generated from the first code example in the `fmt_partsper()` help file.

Function ID

3-6

Function Introduced

v0.6.0 (May 24, 2022)

See Also

The vector-formatting version of this function: vec_fmt_partsper().

Other data formatting functions: data_color(), fmt(), fmt_auto(), fmt_bins(), fmt_bytes(), fmt_chem(), fmt_country(), fmt_currency(), fmt_date(), fmt_datetime(), fmt_duration(), fmt_email(), fmt_engineering(), fmt_flag(), fmt_fraction(), fmt_icon(), fmt_image(), fmt_index(), fmt_integer(), fmt_markdown(), fmt_number(), fmt_passthrough(), fmt_percent(), fmt_roman(), fmt_scientific(), fmt_spelled_num(), fmt_tf(), fmt_time(), fmt_units(), fmt_url(), sub_large_vals(), sub_missing(), sub_small_vals(), sub_values(), sub_zero()


gt documentation built on Sept. 11, 2024, 5:15 p.m.