View source: R/text_transform.R
text_case_match | R Documentation |
text_case_match()
provides a useful interface for a approach to replacing
table cells that behaves much like a switch statement. The targeting of cell for transformation happens with the .locations
argument.
Once overall targeting is handled, you need to supply a sequence of two-sided
formulas matching of the general form: <vector_old_text> ~ <new_text>
. In
the left hand side (LHS) there should be a character vector containing
strings to match on. The right hand side (RHS) should contain a single string
(or something coercible to a length one character vector). There's also the
.replace
argument that changes the matching and replacing behavior. By
default, text_case_match()
will try to match on entire strings and replace
those strings. This can be changed to a partial matching and replacement
strategy with the alternate option.
text_case_match(
.data,
...,
.default = NULL,
.replace = c("all", "partial"),
.locations = cells_body()
)
.data |
The gt table data object
This is the gt table object that is commonly created through use of the
|
... |
Matching expressions
A sequence of two-sided formulas matching this general construction:
|
.default |
Default replacement text
The replacement text to use when cell values aren't matched by any of the
LHS inputs. If |
.replace |
Method for text replacement
A choice in how the matching is to be done. The default |
.locations |
Locations to target
The cell or set of cells to be associated with the text transformation.
Only |
An object of class gt_tbl
.
Let's use the exibble
dataset to create a simple, two-column gt table
(keeping only the char
and fctr
columns). In the char
column, we'll
transform the NA
value to "elderberry"
using the text_case_match()
function. Over in the fctr
column, some more sophisticated matches will be
performed using text_case_match()
. That column has spelled out numbers and
we can produce these on the LHS with help from vec_fmt_spelled_num()
.
The replacements will contain descriptive text. In this last call of
text_case_match()
, we use a .default
to replace text for any of those
non-matched cases.
exibble |> dplyr::select(char, fctr) |> gt() |> text_case_match( NA ~ "elderberry", .locations = cells_body(columns = char) ) |> text_case_match( vec_fmt_spelled_num(1:4) ~ "one to four", vec_fmt_spelled_num(5:6) ~ "five or six", .default = "seven or more", .locations = cells_body(columns = fctr) )
Next, let's use a transformed version of the towny
dataset to create a
gt table. Transform the text in the csd_type
column using two-sided
formulas supplied to text_case_match()
. We can replace matches on the LHS
with Fontawesome icons furnished by the fontawesome R package.
towny |> dplyr::select(name, csd_type, population_2021) |> dplyr::filter(csd_type %in% c("city", "town")) |> dplyr::slice_max(population_2021, n = 5, by = csd_type) |> dplyr::arrange(csd_type) |> gt() |> fmt_integer() |> text_case_match( "city" ~ fontawesome::fa("city"), "town" ~ fontawesome::fa("house-chimney") ) |> cols_label( name = "City/Town", csd_type = "", population_2021 = "Population" )
4-3
v0.9.0
(Mar 31, 2023)
Other text transforming functions:
text_case_when()
,
text_replace()
,
text_transform()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.